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Abstract

Uncertainty appears to have both a short-run and a long-run component, which we
measure using firm and macro implied volatility data from equity options of 30 days
to 5 years duration. We ask what may be driving uncertainty over these different time
horizons, finding that policy uncertainty, interest rate volatility, and currency volatility
are particularly associated with long-run uncertainty, while oil price volatility and CEO
turnover appear to impact short- and long-run uncertainty about equally. Examining
a panel of over 4,000 firms from 1996 to 2016 we find that investment is relatively
more sensitive to long-run uncertainty than hiring, and about as sensitive to long-run
uncertainty as R&D. Investment is also more sensitive to the overall level of uncertainty
than both R&D and hiring, holding fixed the relative magnitude of short- versus long-
run uncertainty. We investigate the channels underlying these different sensitivies to
short- versus long-run uncertainty, and show empirically and in simulations that lower
depreciation rates and higher adjustment costs explain why investment is more sensitive
to longer-run uncertainty. Collectively, these results suggest that recent events that have
raised long-run policy uncertainty may be particularly damaging to growth by reducing
investment and R&D.
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1 Introduction

Uncertainty has received substantial attention as a potential factor shaping aggregate eco-

nomic outcomes. For example, the Federal Open Market Committee minutes repeatedly

emphasize uncertainty as a key factor driving the 2001 and 2007-2009 recessions, while Stock

and Watson (2012) state that "the main contributions to the decline in output and employ-

ment during the [2007-2009] recession are estimated to come from financial and uncertainty

shocks."

In the summer of 2016 the world economy was rocked with one such uncertainty shock

when the United Kingdom voted to leave the European Union. But the Brexit vote gener-

ated no uncertainty about the economic policies or fundamentals in place during the weeks

and months immediately following the vote. Instead, the referendum results created huge

questions about the future of the UK’s trading relationships, the long-run immigration sta-

tus of European Union citizens living in the UK and vice versa, and more broadly about the

long-run outlook of the British, European, and global economies. Similarly, the election of

Donald Trump to the US Presidency in November 2016 produced a dramatic rise in policy

uncertainty, particularly over longer-run policies regarding trade, immigration, taxation and

healthcare reform.

This paper seeks to investigate whether short- and long-run uncertainty impact the econ-

omy equally by exploiting information about the time profile of uncertainty embedded in

equity options of different durations. Equity options are issued at a range of durations from

30 days to 2 years for individual equities and 30 days to 10 years for the overall S&P 500

index, yielding firm-specific and macro implied volatility curves. The well-known VIX is a

measure of the 30-day implied volatility of the S&P 500, but it is possible to apply the for-

mula of the VIX to options with longer expiration horizons to obtain measures of longer-run

stock market volatility. In Figure 1 we show how at a given point in time this "generalized

VIX" varies with the maximum expiration of the options used to calculate that implied

volatility, tracing out the time profile of uncertainty.

We begin by documenting that two principal components, roughly corresponding to

"level" and "slope", account for up to 99 percent of the total variance in both the macro and
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firm-specific volatility curves. In effect, this result means that volatility curves are approxi-

mately linear, which we can already see in Figure 1. We argue that the changing level and

slope of volatility curves reflects fluctuations in the time profile of uncertainty that could

influence different firm decisions whose payoffs have different horizons. For example, invest-

ment and R&D as longer-run decisions may respond more strongly to long-run uncertainty

than hiring.

Before going further, we ask what might drive flucturations in short- versus long-run

implied volatility at the firm level. Examining five factors that vary at the firm-quarter level

- the price of oil, interest rate exposure (via leverage), exchange rates, policy uncertainty,

and CEO turnover - we find that policy uncertainty has a larger impact on long-run versus

short-run uncertainty. This result is perhaps not very surprising given the longer-run focus

of many of the major policy debates of recent years, including discussions about the US

debt ceiling, health-care, immigration reform and involvement in foreign wars. Exposure to

interest rate volatility also co-moves strongly with longer-run uncertainty, perhaps reflecting

the impact of interest rates on longer-run, forward-looking activity like investment and R&D.

We also find that exposure to currency volatility is predictive of movements in the levels of

longer-run implied volatility. By contrast, we find oil price volatility and CEO turnover

appear to impact both short-run and long-run uncertainty about equally.

To investigate the hypothesis that different firm policies react differently to short- versus

long-run uncertainty, we build a panel dataset of over 4,000 firms from 1996 to 2016 com-

bining data on firm-specific option implied volatiliies across across a range of horizons and

standard data on real and financial variables from US publicly-traded companies. We find

that investment, R&D activity, and employment are all significantly reduced by uncertainty,

but investment and R&D are significantly more responsive to long-run uncertainty than em-

ployment. Investment is also more sensitive to the overall level of uncertainty, holding fixed

the slope of the uncertainty profile.

Observing these relationships, we conjecture that the differential sensitivity to short- and

long-run uncertainty across different types of investments is a result of differences in adjusta-

bility and durability. To test this conjecture we collect data at the industry-year level on the

rate of depreciation of physical capital, and the share of structures versus equipment in the
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total physical capital owned by businesses in each industry and year. We find that the dif-

ferential sensitivity of investment to long-run uncertainty relative to hiring is comes entirely

from the sub-sample of our data with above-median share of structures, or below-median

depreciation. This finding is consistent with our intuition that greater adjustment costs

and lower depreciation make capital investment longer lived, and therefore more sensitive to

long-run uncertainty.

Finally, we use simulations from a model with short- and long-run uncertainty processes

to verify quantitatively that differences in durability and adjustability can jointly explain

why investment drops more than hiring under long-run uncertainty. The firms in the model

produce using two factors - capital and labor - which, again, are distinguished by capital

having higher adjustment costs and lower depreciation rates. Consistent with our empirical

results, the greater adjustment costs and (more importantly) greater durability of capital

make it more responsive to long-run uncertainty than hiring in the model.

Our findings in this paper highlight how factor inputs with low depreciation rates (like

buildings and longer-lived equipment) and those with high adjustment costs (like intangibles

and organizational capital) are going to be particularly sensitive to long-run uncertainty. As

such, the recent increases in policy uncertainty in the US - which, again, is a key driver of

long-run uncertainty - may play a role in explaining the puzzlingly low level of aggregate

investment (noted, for example, by Gutiérrez and Philippon (2016)), and low TFP growth

rates (given the importance of intangible investment and R&D for TFP growth) in recent

years. Similarly, we predict that the United Kingdom might face depressed investment and

growth in the years following the Brexit vote as long as there is outstanding uncertainty

about the longer-run future of British economic policy and trading relationships.

Our paper relates most obviously to the empirical literature focused on the impact of

uncertainty for investment (and to a lesser extent hiring) - for example, Bernanke (1983),

Dixit and Pindyck (1994), Caballero et al. (1995) and Abel and Eberly (1996). It is also

related to the empirical literature that studies the impact of real frictions on investment

dynamics. For example, Leahy and Whited (1996), Guiso and Parigi (1999) and Bloom,

Bond, and Van Reenen (2007) all provide evidence suggesting that firm-level uncertainty

shocks reduce firms’ investment and hiring, while Romer (1990), Ramey and Ramey (1995),
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Bloom (2009), Fernández-Villaverde et al. (2011) provide evidence suggesting macro uncer-

tainty shocks appear to drive business cycle fluctuations1. However, none of this literature

focuses on the difference between short-run and long-run uncertainty. Perhaps closer to our

paper is the asset pricing literature examining the volatility curve , including Bekaert and

Hoerova (2014) and Dew-Becker et al. (2015). In a closely related paper Berger et al. (2017)

study whether aggregate realized volatility or expectations of future volatility are associated

with contractionary movements in macro variables, finding that expectations about future

macro volatility have a hard time explaining contractions after accounting for current real-

ized volatility. Our approach differs from theirs in that we focus on how real activity at the

firm level is linked to fluctuations in the idiosyncratic rather than macro volatility curve,

finding strong associations between the time profile of volatility and investment, hiring, and

R&D growth.

We proceed by describing our data and providing more details about how we measure

short- versus long-run uncertainty in Section 2. Then we asking what drives short- versus

long-run uncertainty in section 3. In Section 4 we present the main empirical results on

the response of investment, R&D, and hiring to uncertainty, while Section 5 we develop our

model and simulation results. Section 6 concludes.

2 Data and Measurement

2.1 Measuring Short- and Long-run Uncertainty

We use data on option implied volatilities as our empirical measures of short- and long-

run uncertainty at the macro and firm levels. Formally, an implied volatility measures the

expected risk-neutral volatility in the price of the underlying asset over the horizon covered by

the maturity of the option. Implied volatilities are often considered forward-looking measures

of uncertainty, precisely because they reflect market-based expectations about returns on the
1See also Kehrig (2011)’s paper on countercyclical productivity dispersion; Christiano et al. (2014)’s,

Arellano et al. (2012)’s and Gilchrist et al. (2014)’s papers on uncertainty shocks in models with financial
constraints; work by Gilchrist and Williams (2005) on uncertainty, investment and capacity; Basu and
Bundick (2012)’s paper on uncertainty shocks in a new-Keynesian model; Fernández-Villaverde et al. (2015)’s
paper on fiscal policy uncertainty; Knotek II et al. (2011)’s paper on durable consumption and uncertainty;
and Bachmann and Bayer (2013)’s paper on microeconomic level uncertainty with capital adjustment costs.
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underlying security. The VIX, published by the Chicago Board of Options Exchange, is a

well-known index of the 30-day implied volatility of the S&P 500, and is often used as a

proxy for measuring short-run US macro uncertainty.

We argue that implied volatilities estimated using options of different horizons can be

used to measure uncertainty about a particular firm or the aggregate economy looking ahead

over different horizons. In Figure 2 we show that there is strong comovement between option

implied volatilities of the stock market for a specific horizon and survey-based measures of

subjective uncertainty about GDP growth looking ahead to that same horizon. The mea-

sures of subjective uncertainty come from the European Central Bank’s quarterly Survey

of Professional Forecasters (SPF), which asks respondents to provide subjective probability

densities for the Eurozone’s rate of real GDP growth looking one, two, and five years for-

ward23. In Figure 2a we show that subjective uncertainty about GDP growth looking one

year ahead is highly correlated with both the 1-year (generalized) VIX, and the 1-year VS-

TOXX, the latter which applies the methodology of the VIX to options on the Euro STOXX

50 index of major Eurozone publicly-traded companies. In Figure 2b we show there is also

strong comovement between the 5-year VIX and 5-year subjective uncertainty4. Also in Fig-

ure 2c we show that the difference or slope between 5-year and 1-year GDP uncertainty is

also well-tracked by the difference between the 5-year and 1-year VIX, so the "slope" as well

as the "level" of the volatility curve reflect their analoges in the time profile of uncertainty.

Based on this correspondence, we proceed using implied volatility to measure both short-

and long-run uncertainty in the rest of the paper.

In our empirical results we focus our attention on firm-specific implied volatility, which
2We thank the authors of Kenny and Melo Fernandes (2017) for graciously sharing these series on sub-

jective uncertainty. They fit a unimodal Beta distribution to each SPF respondent’s subjective probability
distribution for GDP growth looking one, two, or five years ahead from the latest data release, and use the
implied standard deviation to measure uncertainty. See Appendix Figure 1 for a screenshot of the relevant
survey questions.

3We do not use data from the US SPF because we find it to be less well suited for the exercise at hand.
For instance, the US SPF has few questions about longer run forecasts. It asks respondents for forecasts of
the current and next calendar years, which is problematic because the horizon of the forecast changes over
time. Additionally, respondents to the US SPF provide probability densities for the "year-over-year growth
of the annual average level" of real GDP. By contrast, the ECB’s SPF clearly asks for the respondent’s
subjective probability density for the Eurozone’s real GDP growth looking one, two, and five years ahead
from the latest data release. We refer interested readers to the Philadelphia FRB and ECB’s respective
webpages for details on both surveys.

4We do not currently have data on a 5-year VSTOXX, so we use the VIX given the good fit in Figure 2a.
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can also be estimated using options of any horizon, making it possible to measure expected

uncertainty over a wide range of durations. We obtain individual firm implied volatility

data from 1996 onwards from OptionMetrics, a database covering all exchange-listed options

in the United States. They provide implied volatility figures for standardized options with

horizons of 30, 60, 91, 152, 182, 273, 365, and 730 days, conditional on the firm having

options trading at or beyond that maturity5. Throughout our empirical work we use the

average of the put and call implied volatilities at each given duration, but our findings are

robust to using either of the two instead, as the put and call implied volatility data are

nearly identical. Because our data on firm financials is at an annual or quarterly frequency

(see Section 2.3), we average daily implied volatility observations into a single uncertainty

measure by firm-quarter or firm year. We link a firm’s investment behavior in a given quarter

with the implied volatility measured in the previous quarter, to mitigate reverse causality

concerns and to exploit the fact that implied volatilities are forward-looking measures of

uncertainty. Analogously, our baseline estimates link firm-level observations in a given fiscal

year with the average implied volatility in the last quarter of the previous fiscal year.

2.2 Level and Slope of the Time Profile of Uncertainty are Sufficient

Statistics

We document the stylized fact that volatility curves (the plot of implied volatility over differ-

ent durations, measured at a point in time) are approximately linear, so we can approximate

the entire volatility curve with two points, as is analogously done in finance with the term

structure of interest rates, for example by Harvey (1988), Estrella and Hardouvelis (1991),

and Ang and Piazzesi (2003). Our stylized fact is consistent with other papers in the the

finance literature that focus on the term structure of variance swaps on the S&P 500, and

expectations about future stock market volatility, including Ait-Sahalia et al. (2015), Egloff

et al. (2010), and Berger et al. (2017).

In Table 1 we formally show that both the macro and firm-specific volatility curves are
5Option Metrics uses observed option trading data to provide information about theoretical "standard-

ized" options, which are theoretical American put and call options with strike prices equal to at-the-money
forward stock prices and fixed maturities. See Appendix B for more details.
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well described by two principal components, roughly corresponding to "level" and "slope".

First, we conduct a principal component analysis of daily observations of the generalized

VIX between mid-2002 and mid-2016, showing the results in Table 1a. Running this exer-

cise with our volatility in both levels and logs, we find that the first principal component

loads positively and with a similar magnitude on each of the 30-day, 3-month, 6-month,

1-year, 2-year, 3-year, 5-year and 10-year generalized VIX. The second principal component,

by contrast, loads negatively on the most short-run horizons, with the loading increasing

monotonically for longer horizons, and is positive for horizons of two years or more. These

results are consistent with the first principal component being associated with the overall

level of the volatility curve, and the second component with the slope. Furthermore, these

two components together account for 99 percent of the joint variance of the volatility curve.

Although the first component on its own accounts for about 90 percent of the variation,

fluctuations in the second still account for a sizeable 8 to 9 percent of the variation.

We verify that the above results also hold for our quarterly measures of firm-specific

implied volatility in Table 1b. To restrict attention to idiosyncratic, within-firm variation

the firm-specific volatility curves - which will be the variation we will use to identify our

main empirical results in Sections 3 and 4 - we run our principal components exercise on

residuals of firm-specific implied volatility after regressing on firm and date fixed effects.

As with the daily macro volatility data, we find that the first principal component loads

positively and about equally on each of the 30-day, 3-month, 6-month, 1-year, and 2-year

implied volatility, whether we use levels of logs of volatility. We also find that the second

component loads more negatively on shorter horizons and more positively on longer ones,

and that the components toger account for 99 percent of the total within-firm variance of

firm-specific volatility curves. Finally, we also find that 90 of that 99 percent is captured by

the first "level" component, exactly as with the macro volatility curve.

We exploit the result that volatility curves are well described by their "level" and slope

"components" to overcome the challenge that firm equity options with longer maturities

(especially for one year and beyond) are traded less frequently, meaning that implied volatil-

ity data at these longer horizons is often missing. This lack of data both decreases sample

size when these longer-run firm-level uncertainty measures, and also potentially raises issues
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about the selection of larger firms whose equity options trade at these longer horizons. Be-

cause we have documented that the level and slope of the volatility curve capture most of the

variation, for most of our analysis below we use a firm’s 30-day implied volatility to measure

the level overall uncertainty, and the difference between a firm’s 6-month and 30-day implied

volatilities to measure the slope.

We verify the viability of this strategy in Table 2, even though our results in Table 1

suggested that restricting attention to level and slope would be sufficient. Starting with

column (1) we show that the quarterly two-year firm-specific implied volatility (the longest

duration at which firm equity options are commonly available) is well predicted by the

corresponding level (30-day implied volatility) and slope (difference between the 6-month

and 30-day volatilities) data, with an R-squared of 0.946. Hence, if we have data for the 30-

day and 6-month implied volatilities for a firm - selecting the 30-day and 6-month durations

as these are commonly traded - we can use them to proxy for the intercept and slope of the

full (approximately linear) volatility curve. In columns (2) to (5) we repeat this exercise for

daily observations of long-run macroeconomic uncertainty up to a five year horizon using the

generalized VIX. Again we see consistent R-squared values above 0.9. This strong linearity

is shown graphically in Figure 3 which plots the 2-year and 5-year VIX against their fitted

values from the regressions of the 30-day and 6-month VIX in columns (2) and (4), where

we see both the good overall fit and the fact this fit appears equally good at low, medium

and high levels of implied volatility.

2.3 Matching our Implied Volatility Data with Compustat

We match our firm-specific implied volatility data to quarterly and annual accounting and

financials data from Compustat, dropping firm-quarters and firm-years with negative book

value of assets, negative sales or stockholders’ equity, as well as those with missing capital

expenditures. Our quarterly sample ranges from 1996Q2 to 2016Q2, while the annual sample

covers 1997 to 2016. As is standard in the empirical literature on investment and uncertainty

(e.g. Gulen and Ion (2015)), we exclude SIC codes corresponding to utilities and financials.

The resulting matched dataset overrepresents large and fast-growing firms as these are the

firms with a sufficient volume of equity option transactions for Option Metrics to provide
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implied volatility estimates. See Appendix Table 1 for summary statistics on the matched

quarterly and annual samples, and Appendix Table 2 for some results on which firms have

non-missing data on 30-day and 6-month implied volatility.

We measure investment as firms’ capital investment rate (capital expenditures per ex-

isting unit of capital). Given our large firm sample we have no negative or zero investment

rates so we take logs to reduce the influence of large outlier investment rates. To mea-

sure quarterly R&D activity we first impute quarterly R&D expenditures (XRD) to be zero

whenever a firm’s R&D expenditures are missing but were previously positive 6. Then we

construct R&D growth as our main measure of R&D activity. Similarly, we measure hiring

as the growth in the reported number of employees across years. We construct standard

first-moment controls in both our quarterly and annual datasets, including the ratio of cash

flows (i.e. operating income) to assets, Tobin’s q (the ratio of the firm’s enterprise value to

the book value of it’s assets) and sales growth.

Following Davis, Haltiwanger and Schuh (1996), we measure all growth rates (in the

number of employees, sales, or R&D expenditures) as the change in variable xt between

years t − 1 and t, divided by the average of the two years (with two consecutive periods of

zero given a zero growth rate). DHS growth rates are well-known to approximate the log-

change for small growth rates, are symmetric around zero, and accommodate entry and exit

with bounded values of plus and minus two. The latter property is especially important for

R&D expenditures, where it is conceivable that even Compustat firms may go from having

positive R&D to zero (and vice versa) from one quarter to the next.

3 What Drives Short- and Long-run Uncertainty?

In the preceding pages we have argued that variation in the level and slope of firm-specific

volatility curves reflects the market’s uncertainty about the firms’ short- and long-run prospects.
6For example, if a firm did not report R&D until 2005, reported positive R&D from 2005 to 2010, and

then stopped reporting R&D after 2010 we would impute zero R&D from 2011 onwards (but leave pre-2005
data as missing). This assumes that post 2010 this was a conscious decision not to report R&D but pre
2005 the data could genuinely have been missing. The reason for this approach is that the reporting of R&D
expenditure by firms has been increasing over time due to more rigorous accounting standards and more
generous tax treatment of R&D.
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But what are the economic reasons leading market actors to perceive the volatility of firm

equity to be high or low for any given horizon? In this section, we construct firm- and sector-

specific measures of exposure to several sources of uncertainty, including economic policy,

oil prices, interest rates, and changes in management. Then we ask whether these exposure

measures are differentially associated with long-run uncertainty, shedding some light on what

may drive fluctuations in the term structure of uncertainty.

3.1 Data on Uncertainty Drivers

We focus on a set of drivers of firm-level uncertainty that can be measured at a quarterly

basis. In particular, we focus on oil and currency price volatility as suggested by Stein

and Stone (2013) and Alfaro et al. (2017), economic policy uncertainty (EPU) as measured

by Baker, Bloom, and Davis (2016), interest rate volatility, and CEO turnover as implied

by Bertrand and Schoar (2003)’s work highlighting the importance of CEOs for company

performance. We acknowledge that there are potentially many other factors driving idiosyn-

cratic firm-level volatility, with our focus on these five driven by data availability. However,

these five factors do capture a number of the key drivers of firm-level uncertainty, and also

highlight their differential impacts on short- and long-run uncertainty.

We construct sector-level exposure to oil and currency price volatility using a two-step

procedure. First, we estimate the sensitivity of individual stock returns to oil and currency

price fluctuations by two-digit SIC industries, controlling for firm fixed effects and market

returns. We estimate the following equation for the daily stock returns of firm i in sector j

and date t :

rijt = αi + βjmrmt + βjoroilt + Σkβjkrkt + εit.

Here rmt are returns on the S&P 500, roilt are oil price returns, and rk are returns from

holding currency k, while αi is a vector of firm fixed effects. The data on stock returns

comes from CRSP, and oil price and exchange rate data from Bloomberg. We use data from

7 currencies which the Federal Reserve Board has designated as "major" currencies and

which it uses to construct the nominal and real trade-weighted U.S. Dollar Index of Major
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Currencies7. Our coefficients of interest are βjo and each of the βjk’s (one for each particular

currency), which capture the sensitivity of stock returns of firms in industryj to fluctuations

in oil prices and exchange rates, respectively. We run this regression on a pre-sample period

ranging from 1985 to 2004 and assume that the estimated sensitivities carry over to our

main sample period from 2005 onwards8. This ensures that our estimated sensitivities are

not dependent on the data in that main sample. In the baseline setup we estimate the

sensitivities by SIC-2 industry, restricting attention to sectors that have data for at least 20

firms during the estimation period.

The second step in constructing volatility exposure to oil and currencies involves multi-

plying the absolute value of each industry’s sensitivity by a measure of the volatility of the

commodity or currency in question. We use the log of 30-day implied volatility for oil and

each of our currencies (obtained from Bloomberg and averaged over a calendar quarter), and

construct an overall measure of currency volatility exposure by adding up over the individual

currencies:

OilVolExposureijt = |β̂weightedjo | · log(σot) (1)

CurrVolExposureijt =
∑
k

|β̂weightedjk | · log(σkt). (2)

In constructing these variables, we attempt to capture the fact that certain industries might

be differentially exposed to fluctuations in exchange rates and commodity prices, having

controlled for overall market and firm conditions. For example, the air travel and oil and gas

sectors might be differentially exposed (respectively, negatively and positively) to oil price

movements. When oil prices are more volatile, these more exposed sectors should perceive
7See https://www.federalreserve.gov/pubs/bulletin/2005/winter05_index.pdf. The seven currencies are

Canadian Dollar, Japanese Yen, Euro (or European Currency Unit prior to 1999), Australian Dollar, Swedish
Krona, Swiss Franc, British Pound. The same set of currencies is used in Alfaro et al. (2017).

8Although we have firm-level implied volatility data from 1996, we do not have implied volatility data for
oil prior to 2005, meaning that we must restrict our attention to 2005 and later for this "drivers" exercise.
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significant oil uncertainty, especially in comparison with other sectors that are less exposed

to oil. We therefore multiply our measure of oil price uncertainty by the absolute value of

the sensitivity. Firms in highly exposed sectors will be highly affected by oil price volatility

regardless of whether they benefit from higher or lower oil prices. The same logic applies

for firms in sectors that are exposed to one or another major foreign exchange market. For

example, domestic atomobile manufacturing may be highly affected by fluctuations in the

Japanese Yen due to significant competition from Japanese firms, and in our measure will

be particularly exposed to volatility on the Yen-Dollar exchange rate.

To reduce the degree of measurement error induced by using estimated sensitivities as

regressions, we weight each sensitivity by its relative degree of statistical significance within

the industry before constructing these exposure variables. This approach follows the strategy

in Alfaro et al. (2017). Namely, we define the weighted sensitivity of industry j’s stock

returns to oil as β̂weightedjo = ωjoβ̂jo where ωjo = |tjo|/(|tjo|+
∑

k |tjk|) and tjl is the t-statistic

of estimated sensitivity βjl. Analogously, for industry j and currency k, β̂weightedjk = ωjkβ̂jk

and ωjk = |tjk|/(|tjo|+
∑

k |tjk|).

Our data on quarterly firm-specific exposure to economic policy uncertainty (EPU) comes

from Baker et al. (2016). This variable is constructed by first scaling an industry’s share of

revenues from Federal Government contracts by the aggregate news-based EPU index. Then,

individual firms are assigned to an industry according to their firm-level line of sales data,

so this results in a firm-by-quarter policy uncertainty index9. We refer interested readers to

the original article for more details on this procedure.

We measure a firm’s exposure to interest rate volatility in a given quarter based on its

leverage and the option implied volatility on US Treasury yields. Namely, we multiply the

ratio of a firm’s total debt (short term plus long term liabilities) to total assets as reported

in Compustat by the natural logarithm of the average level of the TYVIX index during the

calendar quarter. The CBOE computes the TYVIX by applying the methodology of the

VIX to 30-day futures on 10-year Treasury Notes; thus, the TYVIX serves as a measure of

interest rate volatility. By interacting this volatility series with the firm’s leverage, we aim to
9Following Baker et al. (2016) when we use EPU exposure as a right-hand-side variable, we also include

a control that interacts federal spending as percent of GDP with firm’s exposure to government purchases
(again, based on line-of-business data) to control for the direct effect of fiscal policy changes on volatility.
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capture differential exposure to uncertainty about monetary policy and interest rates across

firms with different balance sheet positions.

Our data on executive turnover comes from Execucomp, a database containing infor-

mation on top executives in Compustat firms, in particular listing the dates during which

CEOs held office. This is a simple way of capturing an idiosyncratic event with potentially

significant repercussions to the firm’s future, and potentially affecting the market’s uncer-

tainty about the firm. In our baseline measure we flag all firm-quarters in which Execucomp

records a CEO leaving office, but we find similar results if we restrict to cases in which the

cited reason for the CEO’s departure is not retirement.

3.2 Drivers Results

We study how oil, currency, and interest rate volatility, economic policy uncertainty, and

CEO turnover are associated with short- and long-run uncertainty at the firm level by re-

gressing quarterly measures of firm implied volatility on each of these drivers, including firm

and date fixed effects. We display the results in Table 3, splitting them into four panels

across two pages.

Starting with the top panel focusing on short-run 30-day implied volatility we see indi-

vidually in columns (1) to (5) and jointly in column (6) that all of our candidate drivers are

positively correlated with firm-specific uncertainty, and all but currencies are are statistically

significant . In particular, oil-price exposure is highly significant, and has an extremely large

(and robust) coefficient. Economic policy uncertainty and exposure to interest rate volatil-

ity are also highly significant and larger in magnitude than currency exposure and CEO

churn. In the second panel we look at each of the drivers’ association with the longer-run (6

month) implied volatility and again see that individually each of economic policy uncertainty,

oil, currency and CEO turnover is positively associated with longer-run uncertainty, with

quantitatively similar results in the joint specification of column (6). Now the oil volatility

exposure is about 25 percent smaller in magnitude in comparison with the top-panel, while

the policy-uncertainty measure is still highly significant and slightly larger in magnitude in

both the individual joint specifications.

In the bottom panels of Table 3 we ask which of the drivers are still predictive 6-month
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implied volatility after controlling for the overall level of the vol curve, namely by adding

30-day volatility as an additional regressor. We argue that drivers differentially associated

with long-run uncertainty should have predictive power over 6-month implied volatility even

after adding this control10. Our results show that economic policy uncertainty and interest

rate volatility exposure are still positive and significant in the individual and joint specifi-

cations, even though their magnitudes are smaller than in the second panel from the top.

These smaller magnitudes probably reflect the fact that the slope component of the firm-

specific volatility curve accounts for only about 9 percent of the total variance, with the

rest largely attributable to the level component, as we say in Table 1. Currency volatility,

while insignificant in the top panels is now significant, apparently able to explain relative

movements in 6-month versus 30-day volatility although not their level. Oil price volatility

and CEO turnover experience even larger drops in magnitude, effectively dropping out of

the regressions, with similar results in the joint specification in column (6). These patterns

suggest that policy uncertainty, interest rate volatility, and - perhaps to a lesser degree -

currencies are drivers of long-run uncertainty. CEO turnover and oil prices, by contrast are

at best associated with movements in the level but not the slope of the volatility curve.

Overall our results are intuitive, suggesting that slow-moving and potentially more rad-

ical drivers of uncertainty like economic policy and capital structure are linked to long-run

uncertainty. It will be useful to keep these results in mind later in the paper when we ex-

plore why investment, hiring, and R&D might react differently to movements in short- versus

long-run uncertainty.

4 Investment and Hiring under Short-Run and Long-run

Uncertainty

In this section we document our main empirical finding that the investment, R&D activity,

and hiring behavior of large, publicly-traded firms in the US is negatively impacted by both
10This exercise controls flexibly for the strong (but perhaps imperfect) comovement across different parts

of the volatility curve. In previous versions of this paper we instead used the slope of the vol curve, namely
the log difference between the 6-month and 30-day implied volatilities as a dependent variable with similar
results.
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short- and long-run uncertainty. The sensitivity of each of these activities to the profile of

uncertainty differs, however. We document that capital investment is more sensitive to both

short and long-run uncertainty than hiring, while R&D activity is about equally sensitive

to long-run uncertainty than hiring, but less sensitive to short-run uncertainty. Finally we

document that this response to long-run uncertainty is mainly driven by more highly-levered

firms. Replication files for all the empirical results are available online at this link.

4.1 Specification and Identification

We study the empirical relationship between investment, hiring and R&D growth against

short- versus long-run uncertainty by estimating equations of the form

Yi,t = αi + γt + β1 log(30dIV OLi,t) + β2(log(6mIV OLi,t) − log(30dIV OLi,t))

+ δ1Qi,t−1 + δ2CFi,t/Ai,t−1 + δ3Gi,t + εi,t (3)

where i indexes firms and t indexes quarters or years depending the specification; Yi,t is

one of our outcome variables, namely one of investment, net hiring, or growth in R&D

expenditures; αi is a vector of firm fixed effects; γt is a vector of date fixed effects; 30dIV OLit

and 6mIV OLit are the 30-day and 6-month implied volatilities associated with firm i on date

t. In turn, Qi,t, CFi,t/Ai,t−1, and Git are Tobin’s q, the ratio of current cash flows to book

value of assets, and sales growth11.

Formally, our results are conditional correlations between our outcome variables and

short- and long-run uncertainty, shown in Table 4. In these OLS specifications we use

lagged uncertainty to exploit the fact the implied volatility is a forward-looking measure of

uncertainty. We also include Tobin’s q, cash flow ratio, and sales growth, as well as a full set of

firm and date fixed effects to attempt to control for first-moment determinants of investment,

R&D growth, and hiring that might be correlated with uncertainty. We acknowledge that

these variables cannot control for all unobserved first-moment determinants of investment
11Tobin’s q is the ratio of the firm’s full enterprise value (common and preferred stock capital plus current

and long-term liabilities) over the book value of assets. We measure cash flow is measured as income from
operating activities, and sales growth as the change in sales over the past four quarters from the previous
four quarters, divided by the average over the past eight quarters.
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that may be correlated with short- and long-run uncertainty, and they also cannot eliminate

concerns about reverse causality so this remains a fairly descriptive exercise.

4.2 Main Empirical Results

In Table 4 column (1) we consider the link between quarterly investment – measured as the

ratio in logs of quarterly capital expenditures (CAPX) per unit of lagged net property, plant,

and equipment (PPENT) – on the level of uncertainty proxied by the log of 30 day implied

volatility, and the slope of the volatility curve measured as the log difference between 30 day

and 6 month implied volatility. The specification also includes all of our first moment controls

and a full set of firm and date fixed effects. We see that both the level and slope coefficients

are negative and highly significant, suggesting both short-run and long-run uncertainty are

negatively associated with capital investment.

In column (2) we verify that this negative link between investment and the level and

slope of the volatility curve is also present looking at annual data. We move on to look at

hiring in column (3) and find that it is also negatively associated with the level and slope

of the firm’s volatility curve, but this link is smaller in magnitude and also in terms of

statistical significance. We again see this finding that hiring declines less than investment

when short- but particularly long-run uncertainty is relatively high in column (4) when we

use the difference between annual investment and hiring as the outcome of interest.

Turning to column (5) we explore at the relationship between quarterly growth in R&D

expenditures and short- and long-run uncertainty, finding now that R&D activity is quanti-

tatively very responsive to long-run uncertainty, but not to the overall level of the volatility

curve. This result speaks to a strong deceleration in the growth of R&D expenditures in

the presence of long-run uncertainty, which is intuitive if we believe that there are flow

adjustment costs to R&D, say, because it is hard to fire scientists or scale down the costs

associated with running laboratories, and the payout of this R&D materializes slowly. Then,

high long-run uncertainty makes it undesirable to commit to high levels of R&D spending

that cannot be easily scaled down even in the far-off future. We find that R&D growth is

about as strongly associated with long-run uncertainty as investment, as we see in column

(6) where we use the difference between the two as the dependent variable. So firms seem to
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decelerate their R&D expenditure growth about as strongly as they adjust their investment

rates during times of high long-run uncertainty, but investment drops more strongly when

the overal level of uncertainty is hight (holding the slope constant), as suggested by the

positive and significant coefficient on 30-day implied vol in column (6) 12.

Our results suggests that there is something like a a hierarchy in terms of the relationship

between short- versus long-run uncertainty and real activity, with the largest responses to

long-run uncertainty in R&D growth and investment, and the smallest decline in hiring.

Increases in the level of uncertainty - holding the slope constant - are also linked to declines

in investment, and to a lesser degre hiring, but we find no significant deceleration of R&D

in these cases. As we discussed in the introduction, the current low levels of investment in

the US could be due in part to the high levels of policy uncertainty, which as we saw in

Section 3 is linked to both short- and long-run uncertainty, and somewhat more closely to

long-run uncertainty. Our result that R&D responds about as as investment to short- and

long-run uncertainty furthermore suggests that these high levels of policy uncertainty and

long-run uncertainty could have particularly detrimental effects on innovation and aggregate

productivity growth in the longer term.

We devote most of the rest of this paper to further exploring what aspects of different

types of investment decisions result in the patterns uncovered in this section. In the next

section we explore empirically the role of adjustment costs (as proxied roughly by the share

of structures versus equipment in industry-level capital) and depreciation rates in explaining

why investment might react more than hiring in the face of both short- and long-run un-

certainty. Our simulation exercises in Section 5 are an attemp to show more formally that

adjustment costs versus depreciation parameters generate differential sensitivity to long- ver-

sus short-lived uncertainty shocks in an otherwise standard real options model of investment.
12Interestingly, Stein and Stone (2013) find a positive relationship for R&D on uncertainty, but they

examine the level rather than the growth rate of R&D expenditure. We think the growth rate is the correct
variable for symmetry with the change in the capital shock and employees, and because this focuses on the
short-run response of factor inputs to increased uncertainty as the literature has focused on, following the
early theory and empirical papers like Dixit and Pindyck (1994) and Leahy and Whited (1996).
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4.3 Robustness Checks

Before turning our attention to what mechanisms are responsible for differential sensitvity

of investment, hiring, and R&D growth to short- and long-run uncertainty we show in Table

5 that our baseline results about quarterly investment are robust to small modifications in

the specifications.

To begin, we reproduce this baseline specification from column (1) of Table 4. In column

(2) we include lagged investment as an additional control to capture the fact that capital

expenditures in the current quarter may have been planned for some time, meaning that

lagged investment is predictive of current investment and potentially correlated with our

(also lagged) measures of short- and long-run uncertainty. However, upon examination it is

clear that this is not driving our result that investment responds strongly to both the level

and slope of the volatility curve.

In columns (3) and (4) we test the validity of using 6-month implied volatility to proxy

for long-run uncertainty, instead using 1-year and 2-year implied volatility. The latter is the

longest horizon for which we have implied volatility for individual firms’ equity. The point

estimates in both columns (3) and (4) are similar to the baseline specification despite having

about one-third and one-fifth the sample size, respectively.

Finally, in columns (5) and (6) we consider whether our baseline result changes depending

on whether we use firm-specific volatilities from put versus call options. Recall that our

firm-specific implied volatility data comes from OptionMetrics, who back out these implied

volatility using theoretical, standardized options with fixed maturities like 30 days and 6

months. An observation in this raw data is the implied volatility for a particular firm,

horizon, day, and position (put or call). For our baseline analysis we average across puts

and calls within a firm-maturity-day triple, before averaging across days within a calendar

quarter. In columns (5) and (6) we show that our results are robust to using the implied

volatility from either put or call options. In fact, examining the data from puts and calls,

we find that they are nearly perfectly correlated.
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4.4 The Role of Structures, Equipment and Depreciation

Our basic intuition for why particular forms of forward-looking activity, namely investment

in physical capital and R&D growth, are more responsive to long-run uncertainty than

others like hiring has to do with the natural horizon of different types of investment. Under

this intuition, longer-lived, less reversible or adjustable investments should be particularly

sensitive to long-run uncertainty.

To test our intuition empirically we collect data from the Bureau of Economic Analysis

on: (1) the share of structures versus equipment in the total amount of physical capital

across two-digit NAICS industries and years since 1996; and (2) the rate of economic depre-

ciation of physical fixed assets by industry and year13. We map these data onto our merged

OptionMetrics-Compustat datasets and ask whether our results look different for firm-years

with above- or below-median share of structures and physical depreciation. We view this

exercise as a rough look at the role of adjustment costs and depreciation, with the share of

structures in an industry’s total physical capital serving as a rough proxy for the severity

of adjustment costs in the industry, and depreciation directly looking at the life length of

capital investments in the same industry 14.

In Table 6 we show that capital’s strong relationship long-run uncertainty, and its differ-

ential sensitivity to both short- and long-run uncertainty relative to hiring is driven by the

subsample of firm-years in industries with above-median share of structures in total industry

capital. In column (1) we reproduce our basic result from column (2) of Table 4, but restrict-

ing attention to firms and years for which we have data on the share of structures. In column

(2), looking at the subsample with below-median share of structures in the industry, we find

investment drops less when the level of uncertainty, is higher. Investment also barely drops
13To be specific, we downloaded the BEA’s data tables for the current cost net stock of private equipment

and structures, and their data on the current cost depreciation of private non-residential fixed assets, also
broken down by industry. We would ideally use firm-specific measures of equipment and structures, but
unfortunately these are not available in Compustat for our sample period. Additionally, we would prefer
measures of economic rather than accounting depreciation, so we opt to use the industry-level data from the
BEA for that as well.

14We also collect data on the rate of depreciation of intellectual property (intangible) assets from the
BEA. In Appendix Table 3, we show that the sensitivity of R&D growth to long-run uncertainty comes
from the subsample of industry years with above-median intangibles depreciation. Similarly, we show that
investment’s stronger link to the level of uncertainty relative to R&D growth comes from firm-years with
high intangibles depreciation.
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with increases in slope of the volatility/uncertainty profile for this subsample. By contrast,

in column (3) we find strong declines in investment with the level and slope of uncertainty.

In columns (4) to (6) we repeat the exercise focusing now on hiring as an outcome variable.

We find no empirical relationship between hiring and short- or long-run uncertainty from

firm-years in industries with low shares of structures, and a statistically significant - though

small- relationship between hiring and both the level and slope of the volatility curve in

column (6). We interpret the result from column (6) as a product of complementarities

between labor and capital that lead labor to respond when capital’s adjustment costs are

higher. In columns (7) to (9), furthermore, we find that investment’s differential sensitivity

to long-run uncertainty is attributable to firm-years with a high share of structures in their

total capital.

The exercise in Table 7 reveals, in turn, that investment’s strong sensitivity to long-

run uncertainty arises from the subsample of firm-years in industries that experience low

depreciation of physical capital, as seen in columns (1) to (3). Similarly, in columns (4) to (6),

hiring declines with long-run uncertainty only in industries that experience low depreciation,

and in columns (7) to (9) it is clear that the investment doesn’t drop significantly more than

hiring in industries where capital investments depreciate quickly, and therefore are more

short-lived.

Undoubtedly, our current proxies for adjustment costs and asset life are positively cor-

related. Specifically, structures are both more long-lived than equipment, and harder to

adjust than equipment, so in Section 5 we use simulations to examine whethere there both

adjustment costs and depreciation play a role in our resultsl.

5 Simulation

We develop a firm-level partial equilibrium model to help interpret our prior results on the

differential sensitivity of R&D, investment, and employment to short- and long-run uncer-

tainty. The model is based on a canonical setup like that considered in Chapter 8 of Adda

and Cooper (2003), but features two input factors - capital and labor -, rich adjustment

costs, and time-varying uncertainty. Moreover, we allow this firm-specific uncertainty to
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have both a short-run and a long-run component. We do not include R&D in this baseline

model because of the complexity of having three input factors with three investment deci-

sions alongside a first moment driving process plus short and long-run uncertainty, but the

implications from the comparison of investment and hiring will naturally carry over to the

R&D case.

Solving the model numerically for data-calibrated parameters, we investigate the impact

of short- and long-run uncertainty on firm activity on a panel of simulated data. Consistent

with the empirical results from Section 4, firms stop investing and hiring in reaction to both

short- and long-run uncertainty, but investment drops relatively more than hiring in reaction

to long-run uncertainty. We show that the longer life and greater irreversibility of capital

in the model are responsible for these patterns. Replication files are available online at this

link.

5.1 A Two-Factor Model: Capital versus Labor

Firms are assumed to consist of a number of production units, each making the intertem-

poral decision to invest and hire workers. On date t each production unit has access to

a reduced-form supermodular revenue-generation function based on an underlying Cobb-

Douglas physical production function, assuming that other inputs (e.g. materials) are opti-

mized out statically:

R(At, Kt, Lt) = AtK
αk
t Lαl

t

At is a stochastic Hicks-neutral shock to revenue-generating capacity, which we assume to

be log-normal and follow an AR(1) process with stochastic volatility:

logAt = ρA logAt−1 + σtεt, εt ∼ N (0, 1) (4)

We introduce short- and long-run uncertainty to the model by letting σ2
t , the variance of

innovations to logA, to be the sum of a short-run and a long-run component:

σ2
t = σ2

s,t + σ2
l,t (5)
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The two volatility components, σs and σl, follow independent, symmetric Markov chains on

two points (i.e. a high and a low state), with the persistence of σl being higher than for

σs. In the simulation we assume production units within a firm have a common volatility

process, while innovations to logA, are drawn independently across units within a firm.

Production units choose to invest in new capital and hire workers, both of which become

immediately available for production. Capital depreciates at a rate δk and workers quit at a

rate δl, yielding the following laws-of-motion for K and L:

Kt = (1− δk)Kt−1 + It

Lt = (1− δl)Lt−1 +Ht

We assume that δl ≥ δk, making K longer-lived than L. Investment and hiring are both

subject to adjustment costs due to partial irreversibility (capital resale and layoffs result in

a loss of 1 − γk, 1 − γl, respectively of the value of K and L), and are also subject to fixed

adjustment costs denoted Fk and Fl. By assumption, K has also higher adjustment costs

than L, i.e. γk ≥ γl, and Fk ≥ Fl. These differences in the life of potential investments, as

well as the cost of (especially, downward) adjustability are the key elements of the model

that drive firms’ different reactions to short- versus long-run uncertainty.

Production units decide every period how much to invest in each of K and L so as to

maximize the net present value of cash flows, bearing in mind their current first-moment state

A, latest stock of Kand L, and the current state of the persistent and transitory volatility

processes σs and σl. The complete recursive problem can be stated as follows:
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V (At,Kt−1, Lt−1, σs,t, σl,t) = max
It,Ht


A(Kt−1(1− δk) + It)

αk(Lt−1(1− δl) +Ht)
αl

−C(It, Ht,Kt−1, Lt−1; γk, γl, Fk, Fl)

+ 1
1+rEt[V (At+1,Kt−1(1− δk) + It, Lt−1(1− δl) +Ht, σs,t+1, σl,t+1)]


s.t.

Kt = (1− δk)Kt−1 + It

Lt = (1− δl)Lt−1 +Ht

logAt+1 = ρA logAt + σt+1εt+1

σ2t = σ2s,t + σ2l,t

σs,t+1 = Πs(σs,t)

σ;,t+1 = Πl(σl,t)

5.2 Calibration, Numerical Solution and Simulation

We calibrate the model taking standard parameter values from the literature, when possible,

and trying to choose reasonable ones when there is no consensus. We make the revenue

elasticities of K and L both equal to 0.4 in the model, consistent with constant returns to

scale in the physical production function, equal coefficients on K and L, and 25% markups.

We make the revenue elasticity of both inputs equal in order to focus on how the differential

adjustability and long-livedness of each generate differential sensitivity to short- and long-

run uncertainty. The capital and labor depreciation/attrition rates δk and δl are set to 20%

and 45% on an annual basis respectively, noting that given the stationary nature of the TFP

process this also needs to account for output growth. The irreversibility on K is set to 25%,

with L being twice as downward adjustable. The full parameterization is in Appendix Table

4, with the model period set to be one month to allow for within quarter variation.

The recursive optimization problem is fairly standard, so we solve it via conventional

policy iteration on a state space for (A,K,L, σs, σl) of (5, 42, 42, 2, 2). Having found the

optimal investment policy for each element of the state space, we simulate a panel of 5,000

firms, each consisting of 25 production units that face the investment decision every month.

The choice of 25 units per firm should be interpreted as a stand-in for some large number
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of divisions, offices, etc. within a firm. Again, each unit experiences idiosyncratic shocks to

revenue-generating ability A, but the volatility σt of first moment shocks is common across

units within a firm. The simulation is run for 360 months (30 years), but we discard the

first 300 (25 years) to remove the influence of initial conditions. Then we aggregate monthly

firm-level figures into quarterly and annual data, measuring stock variables like K and L as

the sum across all units of the firm at the end of the period. For flow variables like gross

investment and cash flow we take the sum across units and across months within a year or

quarter. As a last step in generating our simulated dataset, we add 5% measurement error

to all of the simulated data to proxy for the noise in real data.

To measure short- and long-run uncertainty for each firm-month in the simulation, we

use the average expected volatility σ̂ over the next S or L months, respectively:

σ̂S,t = Et[
1

S

S∑
m=1

σt+m] and σ̂L,t = Et[
1

L

L∑
m=1

σt+m], where σt =
√
σ2
s,t + σ2

l,t.

We choose to measure uncertainty in this manner for analogy with option implied volatility,

our uncertainty proxy in the empirical sections of the paper. Implied volatility captures the

expected future uncertainty about the value of an asset over a given horizon that depends

on the maturity of the options used to calculate the implied volatility (see section 2.1). Our

baseline choices for S and L are 1 and 24 months, respectively, but our analysis is robust to

using 1 and 6 months, which are the implied volatility horizons we consider in the empirical

sections of the paper. As with the rest of the simulated data we average monthly uncertainty

measures by quarter, but we take a firm’s level of short- and long-run uncertainty in year

t with the average σ̂s,t and σ̂l,t during last quarter in the year. This is analogous to our

treatment of the empirical implied volatility data (again, see Section 2 for details).

5.3 Simulation Results

The model generates a tight negative relationship between capital investment and both

short- and long-run uncertainty. In Table 8 we regress the quarterly net investment rate on

lagged expected volatility (in logs) using 30-day, 6-month, and 2-year horizons, including
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first moment controls and firm and date fixed effects15. Columns (1) through (3) document

that our simulated investment series is negatively linked to uncertainty at all three horizons.

In columns (4) and (5), we again regress logged investment on both the level of short-run

(30-day) expected uncertainty, and the slope uncertainty time profile, alternatively using 6

months or 2 years as the long-run horizon. The results indicate strong negative links between

investment and both the level and slope, suggesting that firms invest less intensively when

the overall level of uncertainty is high, and also when uncertainty over longer horizons is

higher than in the short run. Qualitatively, whether we take 6 months or 2 years as the

long-run uncertainty horizon makes little difference, so henceforth we focus on 6 months as

the long-run horizon, for analogy with the empirical work. Including additional first-moment

determinants of investment, specifically ones that mirror those used in the empirical section,

does not qualitatively change the results.

In Table 9 we investigate how uncertainty impacts investment in capital versus hiring.

We focus on differences in net investment versus net hiring in the presence of short- and

long-run uncertainty. All specifications in Table 5 include firm and date fixed effects and the

first moment controls we use in the empirical section, namely the simulation counterparts to

Tobin’s q (value/assets), cash flow (operating profits), and sales (output) growth. The results

in columns (1) and (2) document negative relationships between investment and hiring and

both short- and long-run uncertainty. The magnitudes of the coefficients, however, suggest

that investments in K decline more strongly when long-run uncertainty is high relative to

short-run uncertainty. Hiring, by contrast, seems mostly sensitive to the level uncertainty,

but not significantly linked to the degree of long- versus and short-run uncertainty.

In columns (3) to (5) we look more closely at this hypothesis by using relative capital

investment less hiring as an outcome variable, and investigating what feature of the model

is responsible by modifying the calibration. Starting with column (3), we see that in our

baseline calibration investment and hiring seem to decline about equally with the level of

short-run uncertainty, as the 30-day coefficient is small and insignificant. However, the neg-

ative coefficient on the slope term confirms that investment responds particularly negatively
15We define net investment as the growth rate of the firms’ capital measured following Davis et al. (1996)

as the difference across periods divided by the average. Our simulation results are all similar whether we
use "gross" or "net" investment as an outcome variable.
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when long-run uncertainty is high relative to short-run uncertainty, but hiring does not. In

column (4) we set the adjustment costs for labor equal to those for capital (γl = γk) and find

that the long-run effect falls by about half, with some offsetting short-run impact. So the

greater irreversibility in investment relative to hiring contributes to investment’s sensitivity

to long-run uncertainty. Finally, in column (5) we equalize both durability and adjustability,

setting the depreciation rate equal to the quit rate (δk = δl), and confirm that both short-

and long-run uncertainty are about equally linked to investment in both assets.

Overall, these experiments indicate that both the long-livedness of K relative to L and its

higher adjustment cost contribute to the baseline result thatK investments seem particularly

affected by higher long-run uncertainty. These insights imply that long-lived, costly to adjust

assets - like buildings, long-lived equipment and R&D - will likely be particular sensitive to

long-run uncertainty. So these investments are going to be most acutely reduced, for example,

by spikes in policy uncertainty.

6 Conclusion

Uncertainty appears to have both a short-run and a long-run component. To measure the

time profile of uncertainty we use firm and macro implied volatility data from 30 days to

10 years duration for a panel of over 4,000 US firms. We document that two principal

components, the level and slope of implied volatility curves by horizon capture nearly all

of the variation in the time profile of uncertainty. Empirically, we find that firms’ long-run

volatility is more closely linked with slow-moving and radical risks like those inherent to

policy uncertainty and exposure to interest rate volatility via higher leverage. Moreover,

there are other sources of firm-level uncertainty like CEO turnover, which are associated

with both short- and long-run uncertainty about equally.

We find that R&D growth and investment are particularly sensitive to long-run uncer-

tainty, while employment responds more equally to short- and long-run uncertainty. To

investigate the channels responsible for these phenomena, we split our sample according to

the share of structures in physical capital, and rate of depreciation in physical capital, find-

ing that industries with relatively more structures - and therefore higher adjustment costs
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- and lower depreciation - meaning longer-lived capital - account for investment’s higher

sensitivity to uncertainty than employment. To disentangle the roles of adjustment costs

and depreciation, we consider a model of investment and hiring and find that both aspects

are important explaining why investment is more sensitive to longer-run uncertainty than

hiring.

Our findings are significant in the wake of recent events like Britain’s vote to leave

the European Union and Donald Trump’s assumption of the US Presidency, which have

generated considerable uncertainty over future economic policy around the world. As we

have shown, such policy uncertainty is particularly linked with long-run uncertainty and in

turn with low rates of investment and R&D that can have significant consequences for the

global economic outlook in years to come.
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A Simulation Appendix

A.1 Details on Model Solution and Simulation

We build the simulation model in MATLAB and run it on Stanford’s HPC clusters. The

firms’ dynamic optimization problem is solved using discretization16 and a standard policy

iteration algorithm, which we illustrate below. First we make an initial guess V0(A, k, l, σs, σl)

for the value function and find initial optimal policies k1(A, k, l, σs, σl) and l1(A, k, l, σs, σl) to

maximize the firm’s current revenue and expected continuation value under the assumption

that the value function is V0. Then we obtain the next guess for the value function, V1, as

the value that would arise from following policies k1 and l1. In practice we approximate V1

by iterating on our current guess of the policies 300 times. That is we define

V0,n+1(A, k, l, σs, σl) =
R(A, k, k1(A, k, l, σs, σl), l, l1(A, k, l, σs, σl), σs, σl)+

E[V0,n(A′, k1(A, k, l, σs, σl), l1(A, k, l, σs, σl), σ
′
s, σ
′
l)|A, k, l, σs, σl]

where R(·) denotes the flow returns function containing revenues minus investment and

hiring costs, and E[·] is the conditional expectations operator based on the current state

(A, k, l, σs, σl), and let V1 = V0,300. We then obtain our second guesses for the policy functions

k2 and l2 via maximization under the new guess V1 and take the absolute distance d =

maxA,k,l,σs,σl |k2 − k1|. If d is below a pre-determined tolerance level, we conclude that V1,

k2, and l2 solve the firm’s dynamic program. Otherwise, we repeat the above procedure

by iterating on policy functions k2 and l2 to obtain V2 = V1,300 and new candidate policy

functions k3 and l3. The algorithm continues until convergence, which comes a lot faster

under this procedure than with standard value function iteration, as is well known in the

computational literature.

To simulate data from the model we use Monte Carlo simulation, in order to accommo-

date the fact that the firms in our simulation dataset consist of 25 investment units, each

making optimal investments according to the value function problem formulated in section
16We use full discretization of the state space to accommodate the "sharp" adjustment costs in the model,

which may lead the value function to be non-differentiable in certain regions of the state space. Similarly,
we refrain from using interpolation at any point during the solution procedure to avoid interpolating within
these regions of non-differentiability.
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5. The investment units within a firm have independent first-moment shocks but common

uncertainty shocks. For each firm-month in the simulation, we first obtain σs and σl states

for the firm, then draw new first-moment shocks A for all of the units within the firm, then

record investment and hiring choices by unit. Finally, we aggregate the unit-level data to the

firm level by adding up K and L across units within a firm-month. We run the simulation

for 360 months, dropping data from the first 300 months for ergodicity.

We transfer the simulated data to Stata, where we aggregate the monthly simulation data

to quarterly and annual frequencies and run the empirical analysis of the simulated data, as

described in the main text.

A.2 Simulation Parameters

Appendix Table 4 displays the parameters used in the baseline calibration for the two-factor

model with capital and labor. We discuss most of our choices in Section 5.2, and list sources

as appropriate in the parameterization tables.

B Data Appendix

B.1 Construction of the Firm-level Implied Volatility Dataset

We obtain our implied volatility data from the OptionMetrics database. OptionMetrics

uses observed option trading data to provide information about theoretical "standardized"

options, which are theoretical American put and call options with strike prices equal to at-

the-money forward stock prices and fixed maturities of 30, 60, 91, 152, 182, 273, 365, and

730 days. They obtain these standardized options by using all available options on the same

security and weighting them by vega, maturity, delta, and exercise style. They generate

a volatility surface using a normal kernel weighting function and choosing bandwidth em-

pirically, and calculate standardized option prices and implied volatilities from this surface.

Details of this procedure are available at http://www.optionmetrics.com/. Options must

have vegas greater than 0.5 and time to maturity greater than 10 days to be input into the

standardization process. Note these are integrated volatilities rather than spot volatilities -
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so for example σ2
6−month =

´ 6−months
0

σ2
t dt and cited in annualized units. An observation in

the raw data is a firm-day.

To construct the implied volatility dataset we first obtain a single measure of implied

volatility for each horizon by firm-day by averaging implied volatility across puts and calls.

Put and call data are nearly identical, with correlations close to .99, so using either puts or

calls made little difference to the empirical results. Then we compute quarterly measures

of implied volatility by horizon by averaging the daily implied variance of the standardized

options. That is, the implied volatility of a firm i during quarter tis σit =
√

1
Nt

∑Nt

τ=1 s
2
iτ where

siτ is a daily observation of implied volatility for the firm and Nt is the number of days in

quarter tfor which we have nonmissing volatility observations. Our empirical specifications

in exploit variation in the level and slope of firm-specific volatility curves. These curves plot

a firm’s implied volatility by horizon, and thus capture the degree of uncertainty the firm

faces in the short and long run.

B.2 Matching Implied Volatility Data to Compustat

We match the quarterly dataset to quarterly and annual firm-level data from Compustat

North America. In constructing the annual matched dataset we take the implied volatility

for a firm-year to be that of the last quarter of the year. This is useful to obtain less noisy

implied volatility measures at an annual frequency and allows us to exploit the forward-

looking nature of implied volatility. Since many of our regressions in section 4 use lagged

volatility, we effectively regress an annual outcome variable on the implied volatility in final

months of the previous fiscal year, which reflects the market’s uncertainty about the firm

looking forward to the year in question. For the quarterly matched dataset we simply match

by quarter.

See Appendix Table 1 for summary statistics on the samples defined by the baseline

regressions in Table 4.

Selection into our matched sample is largely based on the availability of accounting data

from Compustat and implied volatility data from OptionMetrics, specifically selecting firms

with options of durations of at least six months. We test for selection into this sample in

Appendix Table 2, where we run linear probability models to predict whether a Compustat
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firm has non-missing 30-day and 6-month implied volatility in a particular month. This

exercise suggests that larger, faster growing, and less volatile firms are more likely to have

non-missing implied volatility data at both horizons.

B.3 Additional Details on Testing for Drivers of Short- and Long-

run Uncertainty

See section 3 for an outline of how we construct the matched firm-quarter dataset containing

implied volatility and drivers data.

During our estimation of the sector-level sensitivities of equity returns to market, oil,

and currency returns we restrict attention to SIC-2 sectors that featured at least 20 distinct

firms during the estimation period of 1985-2004. When we restricted attention to sectors

that included 15 or 25 firms the results did not change very much.

All of our uncertainty regressions in Table 3 are weighted by employment, as is standard

in this line of literature (e.g. Baker et al., 2016). Also following Baker et al. (2016) whenever

we have the firm-specific economic policy uncertainty index as a regressor we include a

control consisting of federal spending as a fraction of GDP multiplied by firm-level exposure

to government purchases.

In our baseline regressions in in Table 3 we define CEO turnover as an indicator for firm-

quarters during which Execucomp records a CEO stepping down. In the data, only 78% of

these CEO departures have a new CEO taking office within the same calendar quarter, but

our regressions are robust to defining CEO turnover as an indicator for firm-quarters with

a new CEO coming in. The same is true if we define turnover to indicate any change in the

identity of the CEO within the quarter, regardless of whether the CEO is replaced during

the quarter, the post becomes vacant and is unfilled within the calendar quarter, or a new

CEO takes over a vacancy that began in a previous quarter. We also find similar results if

we restrict attention to cases in which the reason cited for the CEO’s departure is explicitly

given as something other than retirement.
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C Depreciation of Intangible Capital and Short- vs. Long-

run Uncertainty

In addition to figures on physical capital stocks and depreciation, the Bureau of Economic

Analysis publishes its estimates of intellectual property assets depreciation by industry and

year. Here we repeat the exercise from Section 4.4, but focusing on differences across invest-

ment and R&D growth in their sensitivity to short- and long-run uncertainty and how those

differences depend on the rate of depreciation of intangible assets. See Appendix Table 3 for

our results.

In columns (1) to (3) we show that investment’s sensitivity to both the level and slope

of the uncertainty profile is concentrated almost entirely among firm-quarters belonging

to industries with above-median intangibles depreciation, perhaps because industries with

longer-lived intangible assets are less dependent on physical capital.. Analogously, in columns

(4) to (6) the link between R&D growth and the slope of the uncertainty profile originates

entirely among the subsample with short-lived intangibles. We believe the intuition for this

result is a consequence of adjustment costs on the level of R&D expenditures (a flow variable),

rather than on the firm’s knowledge stock. When intangile capital depreciates quickly, firms

may be particularly reluctant to commit to higher levels of R&D spending in the longer-run,

highly uncertain future, given that the payoff to those R&D investments will mostly vanish

in the short- to medium-term.

In Columns (7) to (9) we additionally document that investment’s strong sensitivity to

the overall level of uncertianty is also concentrated among sectors with high intangibles

depreciation.
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Table 1: Principal Components of Macro and Firm-specific Implied Volatility   

 
a. Macro Volatility 

 

 Levels   Logs 

Horizon 1st 2nd   1st 2nd 

      

30 days 0.332 -0.526  0.333 -0.538 

3 months 0.352 -0.386  0.352 -0.388 

6 months 0.364 -0.234  0.363 -0.230 

1 year 0.369 -0.068  0.367 -0.062 

2 years 0.368 0.104  0.366 0.109 

3 years 0.365 0.200  0.363 0.203 

5 years 0.357 0.334  0.356 0.333 

10 years 0.319 0.594  0.326 0.582 

Cumulative Variance: 0.908 0.990   0.919 0.990 
Notes: First and second principal component loadings across horizons for levels (left) and logs (right) of the 
generalized VIX, measured at a daily frequency between July 1, 2002 and July 29, 2016. 

b. Firm-specific Volatility 
 

  Levels   Logs 

Horizon 1st 2nd   1st 2nd 

      

30 days 0.447 -0.441  0.447 -0.446 

3 months 0.457 -0.356  0.457 -0.351 

6 months 0.459 -0.241  0.459 -0.243 

1 year 0.446 0.420  0.446 0.426 

2 years 0.426 0.666  0.426 0.661 

      

Cumulative Variance: 0.908 0.978   0.910 0.980 
Notes: First and second principal component loadings across horizons for levels (left) and logs (right) of firm-
specific implied volatility, measured at a quarterly frequency. Prior to obtaining principal components, we remove 
firm and date fixed effects from this data to focus on firm-specific variation in short- and long-run implied 
volatility. We measure the implied volatility of a given firm in a given quarter for a given horizon as the average 
across all daily implied volatility observations for that quarter and that horizon. Our daily implied volatility data 
comes from OptionMetrics. 
 



Table 2: Predicting Long-run Implied Volatility 
 

  (1) (2) (3) (4) (5) 

Dependent Variable 
2-year Firm 
Implied Vol. 

1-year VIX 2-year VIX 3-year VIX 5-year VIX 

            
30-day Implied Vol. 0.878*** 0.942*** 0.866*** 0.818*** 0.735*** 
 (0.006) (0.012) (0.027) (0.033) (0.047) 
6-month - 30-day Vol. 1.196*** 1.233*** 1.347*** 1.369*** 1.336*** 
 (0.038) (0.033) (0.073) (0.092) (0.125) 
Constant 4.308*** 1.423*** 3.522*** 5.067*** 7.844*** 
 (0.200) (0.303) (0.689) (0.842) (1.139) 
      
Observations 22,794 3,585 3,585 3,585 3,585 
R-squared 0.944 0.993 0.971 0.948 0.901 
Notes: Column (1) regresses quarterly firm-level 2-year implied volatility (source: Optionmetrics) on 30-day and 6-month 
minus 30-day implied volatility. Columns (2) to (6) regress the daily generalized VIX for the specified horizon on the 
contemporaneous 30-day and 6-month minus 30-day generalized VIX (source: Goldman Sachs). Column (1) standard errors 
clustered by firm. Columns (2) to (6) report Newey-West standard errors, assuming autocorrelation up to 250 trading days. 
*** p<0.01, ** p<0.05, * p<0.1 



 
 
 
 

Table 3: Drivers of Short- and Long-run Uncertainty 
 

Top Panels 
 

  (1) (2) (3) (4) (5) (6) 
Dependent Variable log(30-day IVOL) 

Economic Policy Unc. Exposure 0.239***     0.223*** 

 (0.053)     (0.044) 
Oil Vol. Exposure  1.266**    1.305** 

  (0.596)    (0.560) 
Currency Vol. Exposure   0.017   0.012 

   (0.045)   (0.039) 
CEO Turnover    0.019**  0.018** 

    (0.007)  (0.007) 
Interest Rate Vol. Exposure     0.207*** 0.207*** 

     (0.033) (0.033) 
Dependent Variable log(6-month IVOL) 

Economic Policy Unc. Exposure 0.267***     0.253*** 

 (0.063)     (0.041) 
Oil Vol. Exposure  0.999**    0.981** 

  (0.399)    (0.387) 
Currency Vol. Exposure   0.032   0.029 

   (0.035)   (0.030) 
CEO Turnover    0.015**  0.014** 

    (0.006)  (0.006) 
Interest Rate Vol. Exposure     0.192*** 0.192*** 

     (0.031) (0.030) 
Observations 68,424 68,424 68,424 68,424 68,424 68,424 

Clusters 60 60 60 60 60 60 
 
 

  



 
Bottom Panel 

 
Dependent Variable log(6-month IVOL) 

log(30-day IVOL) 0.776*** 0.776*** 0.776*** 0.776*** 0.772*** 0.772*** 

 (0.024) (0.024) (0.023) (0.024) (0.024) (0.024) 
Economic Policy Unc. Exposure 0.082**     0.081*** 

 (0.031)     (0.026) 
Oil Vol. Exposure  0.016    -0.026 

  (0.120)    (0.097) 
Currency Vol. Exposure   0.019***   0.020*** 

   (0.005)   (0.005) 
CEO Turnover    0.000  0.000 

    (0.005)  (0.005) 

Interest Rate Vol. Exposure     0.032*** 0.032*** 

     (0.008) (0.008) 
Observations 68,424 68,424 68,424 68,424 68,424 68,424 

Clusters 60 60 60 60 60 60 
Notes: All columns include a full set of time and firm fixed effects, with variables measured at a quarterly frequency. Robust standard 
errors in parentheses, clustered by 2-digit sector. One observation is a firm-quarter. Implied volatility data are from OptionMetrics. 
Firm-specific exposure to Economic Policy Uncertainty by month is from Baker et al (2016). We construct sectoral exposure to oil and 
currencies using CRSP data on stock returns, Bloomberg data on oil prices and exchange rates from 1985-2004, and quarterly averages 
of implied volatility data for oil and currencies covering 2005-2016.We consider exchange rates for the USD against CAD, JPY, EUR, 
AUD, SEK, CHF, GBP. CEO Turnover is from Execucomp, constructed as an indicator for whether the CEO was stepping down 
during the quarter. Interest rate volatility exposure is the product of a firm's leverage in a given quarter and the natural logarithm of the 
average level of the TYVIX during the quarter. We measure leverage as the ratio of short plus long term debt over  total assets, and the 
TYVIX is the CBOE's 30-day volatility index on 10-year US Treasury yields. Regressions are weighted by employment. *** p<0.01, 
** p<0.05, * p<0.1, +p<.15 

 
 



Table 4: Investment, R&D Activity, and Hiring under Short- and Long-run Uncertainty 
 
 

  (1) (2) (3) (4) (5) (6) 

Variables 
Investment Investment Hiring Investment 

- Hiring 
R&D 

Growth 

R&D 
Growth - 

Investment 
Frequency Q A A A Q Q 

       
Lag log(30-day IVOL) -0.229*** -0.229*** -0.019* -0.202*** -0.016 0.164*** 

 (0.037) (0.036) (0.010) (0.035) (0.017) (0.046) 
Lag log(30-day IVOL) - log(6-month IVOL) -0.202*** -0.261*** -0.024 -0.228*** -0.181** -0.029 

 (0.060) (0.071) (0.023) (0.067) (0.072) (0.108) 
Lag Tobin's Q 0.118*** 0.113*** 0.013*** 0.101*** 0.001 -0.110*** 

 (0.010) (0.010) (0.002) (0.009) (0.004) (0.011) 
Cash Flow / Assets 0.979*** 0.758*** 0.141*** 0.603*** 2.483*** 1.762*** 

 (0.147) (0.142) (0.051) (0.142) (0.757) (0.648) 
Sales Growth 0.388*** 0.663*** 0.497*** 0.163*** 0.007 -0.401*** 

 (0.034) (0.039) (0.022) (0.035) (0.015) (0.040) 
       

Observations 114,765 30,939 30,848 30,790 77,224 76,018 
R-squared 0.576 0.683 0.444 0.652 0.147 0.299 
Clusters 4642 3976 3970 3962 3115 3093 
Notes: Regressions are quarterly (Q) in columns (1), (5), and (6) and annual (A) in columns (2) to (4). All columns include a full set of 
firm and date fixed effects and are weighted by employment. Robust standard errors in parentheses, clustered by firm. Data is from 
Compustat for accounting variables matched to data on implied volatility of standardized options taken from OptionMetrics. Investment 
is measured as the log of capital expenditure (CAPEX) over lagged net plant property and equipment (PPENT). R&D growth is 
measured as the change across periods in R&D expense (XRD) divided by the average, and imputed to zero if both current and lagged 
values are both zero. R&D expense is imputed to zero if missing but the firm previously reported positive R&D expense. Hiring is 
measured as the change in the stock of employees across fiscal years, divided by the average between the current and previous year. 
Tobin's Q is measured as the sum of market value, preferred stock capital, current and long-term liabilities, all divided by the book 
value of assets. Cash flow is defined as operating income. In annual specifications, the implied volatility for a given fiscal year is taken 
to be the average implied volatility during the last quarter of the year, while it is taken as the average for the quarter in quarterly 
specifications. In the regressions, implied volatility is lagged by 1 or 4 quarters depending on whether the frequency is quarterly or 
annual. All variables are winsorized at the 1st and 99th percentiles. *** p<0.01, ** p<0.05, * p<0.1 

 
 



Table 5: Investment Under Short- and Long-run Uncertainty, Robustness  
 
 
 

  (1) (2) (3) (4) (5) (6) 
Dependent Variable Investment 
              
Lag log(30d IVOL) -0.229*** -0.146*** -0.292*** -0.241*** -0.232*** -0.217*** 

 (0.037) (0.023) (0.061) (0.064) (0.037) (0.036) 
Lag log(6m IVOL) - log(30d IVOL) -0.202*** -0.177***   -0.206*** -0.163*** 

 (0.060) (0.041)   (0.057) (0.052) 
Lag log(1-year IVOL) - log(30d 
IVOL)   -0.296***    

   (0.099)    
Lag log(2y IVOL) - log(30d IVOL)    -0.219***   

    (0.084)   
Lag Investment  0.425***     

  (0.018)     
Lag Tobin's Q 0.118*** 0.074*** 0.106*** 0.095*** 0.118*** 0.118*** 

 (0.010) (0.007) (0.014) (0.014) (0.010) (0.010) 
Cash Flow / Assets 0.979*** 1.108*** 0.875*** 0.747*** 0.977*** 0.983*** 

 (0.147) (0.167) (0.243) (0.253) (0.147) (0.147) 
Sales Growth 0.388*** 0.227*** 0.354*** 0.421*** 0.387*** 0.388*** 

 (0.034) (0.024) (0.049) (0.056) (0.034) (0.034) 
       

Implied Volatility from Puts and Calls Y Y Y Y   
Implied Volatility from Puts Only     Y  
Implied Volatility from Calls Only      Y 

       
Observations 114,765 106,725 31,391 21,493 114,765 114,765 
R-squared 0.576 0.660 0.613 0.619 0.577 0.576 
Clusters 4642 4341 1436 1299 4642 4642 
Notes: All columns are quarterly OLS regressions weighted by employment and include a full set of firm and date fixed effects.  
Robust standard errors in parentheses, clustered by firm. Data are from Compustat for accounting variables matched to data on 
implied volatility of standardized options taken from OptionMetrics. Investment is measured as the log of capital expenditure 
(CAPEX) over lagged net plant, property, and equipment (PPENT). Tobin's Q is measured as the sum of market value, preferred 
stock capital, current, and long-term liabilities, all divided by the book value of assets. Cash flow is defined as operating income.  
Implied volatilities measured as the average for the quarter and lagged.  We measure a firm's implied volatility for a given 
horizon in a given quarter as the average daily implied volatility in the quarter. In columns (1) through (4) we average the 
implied volatility of standardized put and call options within a day before averaging across days in a calendar quarter. In 
columns (5) to (6) we use data only from puts and calls, respectively. *** p<0.01, ** p<0.05, * p<0.1 

 



Table 6: Structures, Equipment and Short- vs. Long-run Uncertainty  
 
 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Dependent Variable Investment Hiring Investment - Hiring 

Sample All 
Low 

Structures/ 
Capital 

High 
Structures/ 

Capital 
All 

Low 
Structures/ 

Capital 

High 
Structures/ 

Capital 
All 

Low 
Structures/ 

Capital 

High 
Structures/ 

Capital 

                  
Lag log(30d IVOL) -0.221*** -0.166*** -0.304*** -0.022** -0.008 -0.033** -0.194*** -0.155*** -0.264*** 

 (0.036) (0.045) (0.051) (0.011) (0.012) (0.016) (0.035) (0.047) (0.048) 
Lag log(6m IVOL) - log(30d 
IVOL) -0.241*** -0.027 -0.419*** -0.033 0.004 -0.062** -0.202*** -0.025 -0.351*** 

 (0.071) (0.100) (0.094) (0.024) (0.036) (0.031) (0.067) (0.097) (0.089) 
Lag Tobin's Q 0.114*** 0.114*** 0.113*** 0.013*** 0.011*** 0.014*** 0.101*** 0.102*** 0.100*** 

 (0.010) (0.014) (0.015) (0.002) (0.003) (0.003) (0.009) (0.012) (0.013) 
Cash Flow / Assets 0.722*** 0.426*** 0.920*** 0.142*** 0.116** 0.150* 0.569*** 0.307** 0.753*** 

 (0.140) (0.143) (0.212) (0.051) (0.046) (0.081) (0.138) (0.134) (0.213) 
Sales Growth 0.663*** 0.689*** 0.650*** 0.499*** 0.470*** 0.534*** 0.162*** 0.216*** 0.113** 

 (0.040) (0.047) (0.063) (0.023) (0.023) (0.038) (0.035) (0.042) (0.055) 
          

Observations 30,513 15,733 14,742 30,513 15,733 14,742 30,513 15,733 14,742 
R-squared 0.685 0.677 0.705 0.444 0.451 0.453 0.654 0.647 0.673 
Firms 3926 2001 2009 3926 2001 2009 3926 2001 2009 
Notes: All columns are annual OLS regressions at the firm level. All columns include a full set of firm and date fixed effects, and are weighted by employment. Columns (1), 
(4), and (7) contain the baseline estimates for all firm-years for which we have industry-level data from the BEA on the share of structures in physical capital. Columns (2), (5), 
and (8) show results for observations belonging to industry-years below the median share of structures; (3), (6), and (9) do the same for observations in industry-years with 
above-median share of structures. Data are accounting information from Compustat matched to data on implied volatility of standardized options taken from OptionMetrics. 
Robust standard errors in parentheses, clustered by firm. Investment is the log of capital expenditure (CAPEX) over lagged net plant property and equipment (PPENT). Hiring 
is the change in employment (EMP) across years divided by the average employment in the two years. Tobin's Q is measured as the sum of market value, preferred stock capital, 
current and long-term liabilities, all divided by the book value of assets. Cash flow is defined as operating income. Implied volatility is measured as the average for the last 
quarter of the fiscal year in the annual specifications. We obtained data on the total replacement cost of  physical fixed assets (structures and equipment) by NAICS 2-digit 
industry from the BEA. All variables are winsorized at the 1st and 99th percentiles. *** p<0.01, ** p<0.05, * p<0.1 



Table 7: Depreciation of Physical Capital and Short- vs. Long-run Uncertainty  
 
 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Dependent Variable Investment Hiring Investment - Hiring 

Sample 
All Low 

Depreciation 
High 

Depreciation All Low 
Depreciation 

High 
Depreciation All Low 

Depreciation 
High 

Depreciation 
                  
Lag log(30d IVOL) -0.221*** -0.261*** -0.195*** -0.022** -0.030** -0.003 -0.194*** -0.223*** -0.190*** 

 (0.036) (0.051) (0.044) (0.011) (0.015) (0.013) (0.035) (0.049) (0.044) 
Lag log(6m IVOL) - log(30d IVOL) -0.241*** -0.349*** -0.153 -0.033 -0.070** 0.011 -0.202*** -0.272*** -0.160 

 (0.071) (0.093) (0.108) (0.024) (0.032) (0.034) (0.067) (0.090) (0.099) 
Lag Tobin's Q 0.114*** 0.119*** 0.111*** 0.013*** 0.013*** 0.014*** 0.101*** 0.106*** 0.097*** 

 (0.010) (0.015) (0.012) (0.002) (0.003) (0.003) (0.009) (0.014) (0.011) 
Cash Flow / Assets 0.722*** 0.912*** 0.414*** 0.142*** 0.205*** 0.033 0.569*** 0.692*** 0.376*** 

 (0.140) (0.216) (0.155) (0.051) (0.079) (0.054) (0.138) (0.216) (0.145) 
Sales Growth 0.663*** 0.714*** 0.632*** 0.499*** 0.560*** 0.441*** 0.162*** 0.149*** 0.188*** 

 (0.040) (0.053) (0.068) (0.023) (0.034) (0.028) (0.035) (0.053) (0.054) 
          

Observations 30,513 15,532 14,631 30,513 15,532 14,631 30,513 15,532 14,631 
R-squared 0.685 0.703 0.688 0.444 0.475 0.448 0.654 0.669 0.659 
Firms 3926 2416 2254 3926 2416 2254 3926 2416 2254 
Notes: All columns are annual OLS regressions at the firm level. All columns include a full set of firm and date fixed effects and are weighted by employment. Columns (1), (4), and 
(7) contain the baseline estimates for all firm-years for which we have industry-level data on depreciation from the BEAl. Columns (2), (5), and (8) show results for observations 
belonging to industry-years with physical depreciation below the median; (3), (6), and (9) do the same for observations in industry-years with above-median depreciation. Data are 
accounting information from Compustat matched to data on implied volatility of standardized options taken from OptionMetrics. Robust standard errors in parentheses, clustered by 
firm. Investment is the log of capital expenditure (CAPEX) over lagged net plant property and equipment (PPENT). Hiring is the change in employment (EMP) across years divided 
by the average employment in the two years. Tobin's Q is measured as the sum of market value, preferred stock capital, current and long-term liabilities, all divided by the book value 
of assets. Cash flow is defined as operating income. Implied volatility is measured as the average for the last quarter of the fiscal year in the annual specifications. All variables are 
winsorized at the 1st and 99th percentiles. We obtained data on the value of economic depreciation and physical fixed assets (structures and equipment) from the BEA by NAICS 2-
digit industries. *** p<0.01, ** p<0.05, * p<0.1 

 
 



Table 8: Simulation Quarterly Capital Investment Under Short- and Long-run Uncertainty 
 

  (1) (2) (3) (4) (5) (6) (7) 
Dependent Variable Net Investment 
         

Lag log(30d Expected Vol.) -0.053***   -0.217*** -0.114*** -0.211*** -0.125*** 
 (0.004)   (0.022) (0.009) (0.020) (0.008) 

Lag log(2y Expected Vol.)  -0.205***      
 

 (0.013)      
Lag log(6m Expected Vol.)   -0.091***     

 
  (0.006)     

Lag log(2y Expected Vol.) - 
log(30d Expected Vol.) 

   -0.223***  -0.193***  
   (0.029)  (0.026)  

Lag log(6m Expected Vol.) - 
log(30d Expected Vol.) 

    -0.164***  -0.153*** 
    (0.020)  (0.019) 

Lag Tobin's Q 0.079*** 0.079*** 0.079*** 0.079*** 0.079*** 0.044*** 0.044*** 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Cash Flow/(K+L)      3.245*** 3.246*** 
 

     (0.017) (0.017) 
Sales Growth      0.019*** 0.019*** 

 
     (0.003) (0.003) 

        

Observations 95,000 95,000 95,000 95,000 95,000 65,000 65,000 
R-squared 0.120 0.121 0.121 0.121 0.121 0.504 0.504 
Firms 5000 5000 5000 5000 5000 5000 5000 
Notes: The dependent variable is net investment measured as the DHS growth rate in the capital stock. All columns include a full set 
of firm and date fixed effects. Robust standard errors in parentheses, clustered by firm. Each observation is a firm-quarter from a 
5,000 firm simulation panel. Each firm consists of 25 production units making investment decisions and independent first moment 
shocks common uncertainty shocks. The model is solved and simulated at a monthly frequency and aggregated to quarterly data. 
Short- and long-run uncertainty are measured as the average expected volatility of shocks to revenue-generation over the horizon 
indicated. Tobin's Q is measured as firm value divided by the stock of K and L. Cash flow is defined as revenue. Sales growth is 
measured as the revenue over the past four quarters, minus that over the previous four quarters, divided by the average of the two. 
All variables are winsorized at the 1st and 99th percentiles. *** p<0.01, ** p<0.05, * p<0.1 

 
  



Table 9: Simulation Annual Net Investment and Hiring  
Under Short- and Long-run Uncertainty       

  (1) (2) (3) (4) (5) 
Dependent Variable Net 

Investment 
Hiring  Net Investment – Hiring 

Calibration Baseline Baseline Baseline Equal AC 
 

Equal Dep & 
AC 

           
Lag log(30d Expected Vol.) -0.130*** -0.106*** -0.023 0.150*** -0.012  

(0.020) (0.026) (0.026) (0.017) (0.012) 
Lag log(6m Expected Vol.) -  -0.221*** -0.034 -0.183*** -0.083* -0.044 
   log(30d Expected Vol.) (0.050) (0.065) (0.065) (0.043) (0.030) 
Lagged Tobin's Q 0.081*** 0.136*** -0.054*** -0.023*** -0.000  

(0.003) (0.004) (0.003) (0.002) (0.001) 
Cash Flow / (K + L) 1.385*** 1.412*** -0.027 0.134*** -0.001  

(0.018) (0.025) (0.024) (0.017) (0.006) 
Proportional Sales Growth -0.043*** -0.053*** 0.011 -0.066*** 0.008*  

(0.009) (0.013) (0.012) (0.008) (0.004)      
 

Observations 20,000 20,000 20,000 20,000 20,000 
R-squared 0.746 0.670 0.097 0.104 0.061 
Firms 5000 5000 5000 5000 5000 
Calibration Parameters:          
K effective depreciation 0.2 0.2 0.2 0.2 0.45 
L effective depreciation 0.45 0.45 0.45 0.45 0.45 
K resale loss 0.25 0.25 0.25 0.25 0.25 
L resale loss 0.125 0.125 0.125 0.25 0.25 
Notes: The dependent variables are net investment and hiring, defined as the (DHS) growth rates of capital and labor. 
Column (5) has equal adjustment costs on capital and labor, and column (6) additionally has equal depreciation. All 
columns have a full set of firm and time fixed-effects. Robust standard errors in parentheses, clustered by firm. Each 
observation is a firm-year from a 5,000 firm simulation panel. Each firm consists of 25 production units making 
investment decisions subject to independent first moment shocks and common uncertainty shocks. The model is solved 
and simulated at a monthly frequency and aggregated to annual data. Short- and long-run uncertainty are measured on the 
monthly data as the average expected volatility of first moment shocks over the next 30 days and 6 months, respectively. 
When aggregating to annual data, we take for a given year the average short- and long-run uncertainty over the last quarter 
of the year. Tobin's Q is measured as firm value divided by the stock of K and L. Cash flow is defined as revenue. All 
growth variables are constructed as the current value minus the previous year's value, divided by the average of the two. 
All variables are winsorized at the 1st and 99th percentiles. *** p<0.01, ** p<0.05, * p<0.1 



Appendix Table 1: Summary Statistics 
 

ANNUAL SAMPLE   QUARTERLY SAMPLE 
  Mean SD    Mean SD 
             
Total Assets ($M) 5,265 10,496  Total Assets ($M) 4,523 9,276 
Capital Expenditures ($M) 287.6 641.3  Capital Expenditures ($M) 61.26 138.8 
Sales ($M) 4,401 8,730  Sales ($M) 1,005 2,068 
Cash Flow / Assets 0.0896 0.1517  Cash Flow / Assets 0.0210 0.0474 
PPENT ($M) 1,644 3,738  PPENT ($M) 1,398 3,299 
Lagged Tobin’s Q 2.034 1.857  Lagged Tobin’s Q 2.032 1.868 
Sales Growth 0.0880 0.3044  Sales Growth .1175 0.2938 
Lagged log(30day IVOL) 3.864 0.4503  Lagged log(30day IVOL) 3.835 0.4379 
Lagged log(6m IVOL) 3.820 0.4272  Lagged log(6m IVOL)  3.788 0.4195 
CAPX/PPENT 0.3500 0.4286  CAPX/PPENT 0.0810 0.0902 
Employment Growth 0.0535 0.2207  R&D Expense ($M) 34.62 95.32 
Employees (‘000s) 16.28 30.73  R&D Growth .0109 .6536 
       
N 30,280  N 112,772 
Date Range: 1997-2016       Date Range: 1996Q2 – 2016Q2     
Notes: Summary statistics for the baseline regressions, columns (1) and (4) of Table 3, respectively for the annual and quarterly 
samples. Data is from Compustat North America Fundamentals Quarterly and Annual matched with implied volatility data from 
Option Metrics. Cash flow is defined as operating income. Tobin’s Q is measured as the sum of market value, preferred stock 
capital, current liabilities and long term debt, all divided by the book value of assets. All growth variables measured as the change 
between the value in the current and the previous year, divided by the average of the two. Implied volatility by horizon is measured 
as the average for a firm-quarter, where in the annual sample we identify the implied volatility in a given fiscal year with the 
average of the last quarter.  All variables are winsorized at the 1st and 99th percentiles. 

  



Appendix Table 2: What types of firms have non-missing implied volatility? (OLS) 
 

  (1) (2) (3) (4) (5) (6) 
Dependent Variable 1(30-day Implied Volatitility Nonmissing) 
              
log(Quarterly Sales) 0.0163***   0.0136*** 0.0146*** 0.0149*** 

 (0.00151)   (0.00155) (0.00196) (0.00209) 
Sales Growth  0.0119**  0.0250*** 0.0395*** 0.0258*** 

  (0.00569)  (0.00589) (0.00844) (0.00268) 
Lagged log(91-day Realized Vol.)   -0.0583*** -0.0338*** -0.0951*** -0.0218*** 

   (0.00561) (0.00535) (0.00870) (0.00310) 
Date Fixed Effects N N N N N Y 
Firm Fixed Effects N N N N N Y 

       
Years in Sample 2012 2012 2012 2012 2002 2000-2013 

       

Standard Errors Robust Robust Robust Robust Robust Clustered 
by Firm 

       
R-squared 0.039 0.001 0.025 0.050 0.101 0.560 
Observations 7,715 7,715 7,715 7,715 5,864 109,973 
Dependent Variable  1(6-month Implied Volatility Nonmissing) 
              
log(Quarterly Sales) 0.0181***   0.0160*** 0.0190*** 0.0175*** 

 (0.00157)   (0.00165) (0.00221) (0.00248) 
Sales Growth  0.0108  0.0247*** 0.0447*** 0.0327*** 

  (0.00694)  (0.00708) (0.00919) (0.00313) 
Lagged log(91-day Realized Vol.)   -0.0577*** -0.0283*** -0.109*** -0.0169*** 

   (0.00585) (0.00595) (0.00999) (0.00384) 
Date Fixed Effects N N N N N Y 
Firm Fixed Effects N N N N N Y 

       
Years in Sample 2012 2012 2012 2012 2002 2000-2013 

       
Standard Errors Robust Robust Robust Robust Robust Clustered 

by Firm 
       

R-squared 0.039 0.001 0.020 0.046 0.104 0.516 
Observations 7,715 7,715 7,715 7,715 5,864 109,973 
Notes: OLS regressions on an indicator for nonmissing 30-day or 6-month implied volatility based on firm characteristics.An 
observation is a firm-quarter. Financial information is from Compustat, and quarterly average implied and realized volatility 
of firm equity taken from Optionmetrics. Sales growth is measured as the sum of sales over the past four quarters minus that 
of the previous four quarters, divided by the average of the two. All variables are winsorized at the 1st and 99th percentiles. 
*** p<0.01, ** p<0.05, * p<0.1 



Appendix Table 3: Depreciation of Intangible Capital and Short- vs. Long-run Uncertainty 
 
 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Dependent Variable Investment R&D Growth R&D Growth - Investment 

Sample 
All Low 

Depreciation 
High 

Depreciation All Low 
Depreciation 

High 
Depreciation All Low 

Depreciation 
High 

Depreciation 
                  
Lag log(30d IVOL) -0.195*** -0.063 -0.242*** -0.020 -0.034 -0.010 0.168*** 0.029 0.222*** 

 (0.046) (0.051) (0.062) (0.018) (0.032) (0.028) (0.047) (0.058) (0.064) 
Lag log(6m IVOL) - log(30d IVOL) -0.179** 0.120 -0.364*** -0.193** 0.021 -0.347*** -0.022 -0.095 0.004 

 (0.077) (0.103) (0.104) (0.079) (0.126) (0.105) (0.112) (0.152) (0.152) 
Lag Tobin's Q 0.111*** 0.083*** 0.140*** 0.000 -0.018** 0.010** -0.110*** -0.100*** -0.129*** 

 (0.012) (0.015) (0.014) (0.004) (0.007) (0.005) (0.011) (0.015) (0.013) 
Cash Flow / Assets 0.716*** 1.484*** 0.552** 2.573*** 5.397*** 1.745** 1.845*** 3.879*** 1.185* 

 (0.206) (0.259) (0.229) (0.765) (1.067) (0.728) (0.647) (1.020) (0.611) 
Sales Growth 0.428*** 0.304*** 0.456*** 0.019 0.045 0.008 -0.399*** -0.252*** -0.435*** 

 (0.038) (0.045) (0.056) (0.015) (0.030) (0.024) (0.041) (0.051) (0.061) 
          

Observations 75,423 38,716 36,648 75,423 38,716 36,648 75,423 38,716 36,648 
R-squared 0.586 0.617 0.600 0.142 0.247 0.086 0.301 0.313 0.343 
Firms 3067 2418 1606 3067 2418 1606 3067 2418 1606 
Notes: All columns are annual OLS regressions at the firm level. All columns include a full set of firm and date fixed effects, and are weighted by employment. Columns (1), (4), 
and (7) contain the baseline estimates for all firm-years for which we have industry-level data on depreciation from the BEA. Columns (2), (5), and (8) show results for 
observations belonging to industry-years with intangibles depreciation below the median; (3), (6), and (9) do the same for observations in industry-years with above-median 
depreciation. Data are accounting information from Compustat matched to data on implied volatility of standardized options taken from OptionMetrics. Robust standard errors in 
parentheses, clustered by firm. Investment is the log of capital expenditure (CAPEX) over lagged net plant property and equipment (PPENT). R&D Growth is the change in R&D 
expenditures (XRD) across years divided by the average R&D speding across the two years. Tobin's Q is measured as the sum of market value, preferred stock capital, current and 
long-term liabilities, all divided by the book value of assets. Cash flow is defined as operating income. Implied volatility is measured as the average for the last quarter of the fiscal 
year in the annual specifications. All variables are winsorized at the 1st and 99th percentiles. We obtained data on the value of economic depreciation of intangibles and estimates 
of the knowledge stock by NAICS 2-digit industry from the BEA. *** p<0.01, ** p<0.05, * p<0.1 



Appendix Table 4: Baseline Calibration 
 
 

Parameter Description Value Notes 
1/(1+r) discount rate .996 r = 0.05, annually 
αk , αl revenue elasticity of K , L .4 CRS and 25% markups 
σsl , σll low volatility state for σs and σl .24 33% monthly in LL state 
σsh , σlh high volatility state for σs and σl .46 66% monthly in HH state 
ρs monthly persistence of σs .85 annual autocorrelation .15 
ρl monthly persistence of σl .95 annual autocorrelation .49 
δk K effective monthly depreciation .018 20% annual depreciation 
δl L effective monthly depreciation .035 45% annual depreciation 
γk K resale loss .25 25% resale loss, conventional value 
γl L resale loss .125 0.5γk 
Fk fixed K adjustment costs .01 N/A 
Fl fixed L adjustment costs .01 N/A 
ρA monthly autocorrelation of log(A) .983 .95 quarterly, Khan & Thomas (2008) 

  Notes: Parameters used in the baseline calibration of the two-factor simulation model analyzed in Section 5. 
  



 
Figure 1: Fluctuations in the VIX 

 

 
Notes: Average of the generalized VIX for the indicated month, by days to expiration measured on a 
logarithmic scale. The generalized VIX uses the formula used for the “true” VIX (a model-free measure of 
the 30-day implied variance on the S&P 500) for horizons other than the standard 30 days. Source: Goldman 
Sachs. 
  



Figure 2: Short- and Long-run Uncertainty vs. Short- and Long-run Implied Volatility 
 
 

a. One-year Horizon 

 
b. Five-year Horizon 

 



c. Slope: Five-year minus One-year Uncertainty and Volatility 
  

 
Notes: Quarterly data on GDP Growth Uncertainty from the ECB Survey of Professional Forecasters was 
generously provided by the authors Kenny and Melo Fernandes (2017). GDP Growth Uncertainty for a given 
forecaster is the implied subjective standard deviation from fitting a unimodal Beta distribution to the respondent’s 
subjective probability distribution for GDP growth of the Euro Area looking 4 quarters ahead from the latest data 
release. We detrend this subjective uncertainty series before plotting. The generalized VIX uses the formula used for 
the “true” VIX (a model-free measure of the 30-day implied variance on the S&P 500) for horizons other than the 
standard 30 days, building one-, two-, or five-year VIX as necessary. We build quarterly observations of these 
longer-run VIX measures by averaging across the days in a calendar quarter. The one-year VSTOXX is the analogue 
to the one-year VIX, but uses options on the EURO STOXX 50 index of major publicly-traded companies based in 
the Euro Area. In each figure we lag the generalized VIX and VSTOXX by one quarter to account for the timing and 
horizon of the questions in the ECB’s Survey of Professional Forecasters. 

 
 
 



 
Figure 3: Predicting long-run VIX with 30-day and 6-month VIX 

 
A.  2-year VIX 

 

 
Notes: This figure plots the fitted values from a regression of daily observations of 2-year VIX on a 
constant, and the same day’s 30-day and 6-month VIX. Data obtained from Goldman Sachs. R2=.97 
 
 

B. 5-year VIX 
 

 
Notes: This figure plots the fitted values from a regression of daily observations of 2-year VIX on a 
constant, and the same day’s 30-day and 6-month VIX. Data obtained from Goldman Sachs. R2=.90 
 
 
 



Appendix Figure 1: Forecaster’s Subjective Probability  
Distributions for Euro Area GDP Growth: 

 

Notes: Kenny and Melo Fernandes (2017) measure subjective uncertainty at one-, two-, and five-year horizons using 
respondent’s subjective probabilities about Euro Area GDP growth in the one, two, and five years following the latest 
data release. The figure above is from the ECB’s sample questionnaire (available online at 
https://www.ecb.europa.eu/stats/pdf/spfquestionnaire.pdf) , which asked about year-on-year changes since the last 
data release, which would have been for 2012 Q3 in January 2013 when this survey was out in the field. 
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