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A Data Appendix

This Data Appendix provides additional information about my sample from the Atlanta Fed /
Chicago-Booth / Stanford Survey of Business Uncertainty (SBU) and presents additional empirical
results to support my analysis of the SBU data. Readers should refer to Altig et al. (2020) and
its Online Appendix for more background information about the SBU, its methodology, and basic
properties of the data. Recall that the SBU is a monthly panel survey. Unless otherwise noted,
results use data from all survey waves between October 2014 and May 2019.

A.1 Representativeness of the SBU

Figures A.1a to A.1e compare my sample of SBU responses with the broader US Economy, repli-
cating similar figures from the Online Appendix of Altig et al. (2020). Each figure shows the share
of employment accounted for by firms in different size categories, ages, sectors, or regions in the
Survey of Business Uncertainty and the US Economy.

To compute employment shares by size, sector, and region I use the US Census Bureau’s Statis-
tics on US Businesses for 2015. For firm age I use the Census’ Business Dynamics Statistics for 2015.
Figure A.1e additionally shows the share of publicly-traded firms and the share of employment in
publicly-traded firms in the SBU, respectively at just over 10 and 25 percent. This publicly-traded
employment share is not too far from estimates in Davis et al. (2007) that about one-third of
employment in the US is in publicly-traded companies.

My assessment is the SBU is broadly representative of the US economy in employment-weighted
terms. The survey over-represents larger and older firms. Figure A.1a shows the share of employ-
ment accounted for by firms with more than 500 employees is somewhat higher for the SBU, as is
the share of employment born prior to 1990 in Figure A.1b. The survey also over-represents sectors
like durables manufacturing and finance and insurance, and under-represents health care as we can
see in FigureA.1c. Following Altig et al. (2020), I do not reweight the survey to make it resemble the
US economy more closely, in part because could require matching it up to confidential US Census
data.
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Deviations in the share of employment for particular groups of firms versus the US economy
stem partly from the composition of the survey’s sampling frame (provided by an affiliate of Dunn
& Bradstreet); partly due to deliberate over-sampling of larger firms; and partly because larger firms
are more likely to respond. Figure A.2a shows the share of employment by firm size categories for:
(1) the US economy; (2) the sampling frame; (3) firms that our recruiters successfully contacted;
and (4) SBU responses up to May 2019. While the share of employment among firms with less than
20 employees is smaller than the economy’s, the probability with which SBU recruiters successfully
contact a firm increases with firm size, which is also evident in Figure A.2b. Larger firms also account
for a disproportionate share of SBU responses (relative to their share among those contacted), which
is a common finding in voluntary firm surveys. Bloom et al. (2018), for example, obtain a similar
result in the University of Nottingham and the Bank of England’s Decision Maker Panel, which
uses the SBU’s methodology to elicit beliefs about own-firm outcomes from British firms.

See Altig et al. (2020) and its Online Appendix for more information on how firms are recruited
into the SBU and more descriptive information about the survey’s sample. The Online Appendix
of Altig et al. (2020), for example, repeats the exercise in Figure A.2a and shows how the sampling
frame, contacted firms, and responses differ from the US economy in terms of industry affiliation
and region.

A.2 Measuring Subjective Moments and Forecast Errors in the SBU

My empirical analysis focuses on the first and second moments (i.e. expectations and uncertainty)
of the five-point subjective distributions provided by firm managers in the SBU and their associated
forecast errors. See the main text for a screenshot of the relevant survey questions that elicit
subjective distributions for future sales growth and employment. This section provides more detail
on how I obtain subjective means (i.e. expectations or forecasts) and subjective mean absolute
deviations (my measure of subjective uncertainty) from the raw survey data. The procedure I
outline below closely follows the procedures outlined in the Online Appendix of Altig et al. (2020).

The SBU is an unbalanced monthly panel. Respondents receive the sales questionnaire every
two to three months.1 The same applies to the employment questionnaire. Most of my descriptive
analysis concerning managerial beliefs in Section 2 of the main text preserves the survey’s structure
as a monthly panel, but results are similar if I collapse the panel to a quarterly frequency, picking the
last response of the calendar quarter. In fact, when I estimate the structural model of managerial
decision-making described in Sections 3 and 4 of the main text I first collapse the SBU data to
quarterly frequency, keeping only the last response of each calendar quarter. Then, I compute
target moments from this quarterly dataset for conformity with the model’s quarterly frequency.

A.2.1 Measuring subjective moments

I focus primarily on SBU respondents’ beliefs for sales growth over the next four quarters. The
SBU’s raw responses from prior to September 2016 report subjective probability distributions over
the dollar level of sales looking four quarters ahead. Figure A.3 shows the sales questionnaire for
months prior to September 2016. Since September 2016, the sales questions are about growth rates,

1Between September 2016 and April 2019, respondents received questionnaires about sales and employment in
one month and then questionnaires about capital expenditures and unit costs the next month. Prior to September
2016, the SBU also asked questions about pricing and profit margins, so respondents received the same questionnaire
approximately once every three months. Starting in May 2019, respondents receive one of the questionnaires about
sales, employment, or capital expenditures in a given month, rotating over the three topics quarterly.
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as shown in Figure 2 of the main text. The following paragraphs show how I transform the raw
survey responses from both questionnaires to obtain data on beliefs about future sales growth rates.

For survey responses prior to September 2016, I first compute the sales growth rate implied by
the respondent’s reported current sales level in quarter t, st, and each of the five potential quarterly
sales levels in quarter t+ 4, sj,t+4 , where j = 1, 2, 3, 4, 5 indexes the five support point scenarios.2

Following the convention in the literature on business dynamics (e.g. see Davis and Haltiwanger,
1992), I measure these five potential growth rates using arc-percentage changes:

gj,t+4 =
sj,t+4 − st

1
2(sj,t+4 + st)

. (1)

Survey responses since September 2016 report subjective distributions over sales growth rates
directly (again, see Figure 2 in the main text). I assume a respondent’s support point estimate
for her firm’s sales growth rate between quarters t and t + 4 under scenario j = 1, 2, 3, 4, 5, xj,t+4,
corresponds to a traditional growth rate, so xj,t+4 = (sj,t+4−st)/st. Again, st is the reported current
sales level and sj,t+4 is the implied sales level in quarter t + 4 under support point scenario j =
1, 2, 3, 4, 5. I translate these conventional growth rates into arc-percentage changes for conformity
with the pre-September 2016 data (see equation 1), by measuring:

gj,t+4 =
2xj,t+4

(2 + xj,t+4)
.

I now have, for each survey response in t, a five-point subjective probability distribution for
sales growth between quarters t and t+4 . This distribution consists of a vector of potential growth
rates {gj,t+4}5j=1 and a vector containing their associated subjective probabilities, {pj,t+4}5j=1. I
compute a firm’s expectation or forecast for sales growth over the next four quarters as the mean
of her subjective distribution, namely by taking the inner product of the potential growth rate and
probability vectors. Formally, a respondent’s forecast for her firm’s sales growth between quarters
t and t+ 4, gt+4 is:

Ẽt[gt+4] ≡ Ẽ[gt+4|It] =

5∑
j=1

pj,t+4gj,t+4.

The operator Ẽt[·] computes the respondent’s subjective expectation on date t when she responded
to the survey. I use It to denote the manager’s information set at t.

I use the subjective mean absolute deviation from forecast to measure the subjective uncertainty
implied by the manager’s distribution. This object is the inner product of the probability vector
and the vector of absolute deviations from forecast:

M̃ADt[gi,t+4] ≡ Ẽt

[∥∥∥gt+4 − Ẽt[gt+4]
∥∥∥]

=

5∑
i=1

p̃j,t+4

∥∥∥∥∥gj,t+4 −
5∑

k=1

p̃k,t+4gk,t+4

∥∥∥∥∥ .
2For simplicity of notation I do not use respondent-level subscripts throughout this section, but responses in the

SBU belong to a respondent manager i in month m which belongs to quarter t

3



This measure of subjective uncertainty is similar but not exactly the same as the one we use in
Altig et al. (2020). There, we compute the standard deviation of the subjective distribution. I use
the subjective mean absolute deviation because it is the respondent’s expected absolute forecast
error. Thus, comparing subjective mean absolute deviations with actual absolute forecast errors (as
in Fact 2 in Section 2) is an apples-to-apples comparison.

To compute employment growth expectations (i.e. forecasts) and uncertainty, I follow the same
procedure as for sales responses prior to September 2016, since the SBU’s employment questionnaire
asks about current, past, and future employment levels (see Appendix Figure A.1 in the main text).
Again, this is consistent with the treatment of employment expectations and uncertainty in Altig
et al. (2020), except for my use of the mean absolute deviation rather than the standard deviation
to measure uncertainty.

A.2.2 Realized growth rates and forecast errors

Sales Growth I measure a respondent firm’s actual sales growth between quarters t and t + 4,
gt+4 based on the respondent’s reported sales level in quarter t when she makes her forecast, st, as
well its sales as four quarters later, sR,t+4:

gt+4 =
sR,t+4 − st

1
2(sR,t+4 + st)

. (2)

This procedure exploits the SBU’s panel dimension and the fact that the survey tracks sales outcomes
across time.

Because the SBU asks questions about sales every two or three months, there may be more
than one sales growth forecast and more than one reported sales level in the same calendar quarter.
Individual respondents may also drop out of the sample or fail to respond to the survey in a particular
month. To accommodate these circumstances, I aim to measure realized sales growth using sales
levels st and sR,t+4 reported exactly twelve months apart. If there is no data on realized sales sR,t+4

exactly twelve months after observing the original sales level st, I proceed as follows:

• If st belongs to the first month of the quarter (e.g. January), I record sR,t+4 based on the
sales level thirteen months after observing st. If there is also no sales level reported thirteen
months later I use the sales level fourteen months after.

• If st belongs to the second month of the quarter (e.g. February), I record sR,t+4 based on the
sales level eleven months after observing st. If there is no sales level reported eleven months
later I use the sales level thirteen months after.

• If st belongs to the third month of the quarter (e.g. March), I record sR,t+4 based on the sales
level eleven months after observing st. If there is no sales level reported eleven months later
I use the sales level ten months after.

This procedure maximizes the number of observations for realized sales growth rates, namely because
I don’t require exactly twelve months between beliefs and realizations. It also ensures the recorded
sales growth rate (using equation 2) compares sales in quarter t + 4 with an initial sales level in
quarter t when we also observe the subjective distribution for four-quarter horizon sales growth
rates.

I then compute forecast errors by taking the difference between a sales growth forecast (i.e. the
subjective expectation for sales growth between quarters t and t+ 4) and realized sales growth:

4



ForecastErrort,t+4 = Ẽt[gt+4]− gt+4.

Using this definition, a positive forecast error occurs when a respondent’s subjective mean exceeds
the realized sales growth over the ensuing four quarters, and vice versa for a negative forecast error.
For much of my analysis, I winsorize forecast errors at the 1st and 99th percentiles to limit the
influence of outliers but my results are similar without winsorizing.

Employment Growth I follow a similar procedure to compute realized employment growth rate
for the 12 months following an employment forecast in t. I also use arc-percentage changes to
measure employment growth rates.

Since employment is a stock rather than a flow variable and the questionnaire asks for employ-
ment levels looking 12 months ahead (see appendix Figure A.1 in the main text), I record realized
employment growth rates based on the firm’s employment at t and its employment 12 months later.
If the level of employment 12 months after survey t is not available, I use the level of employment
recorded 11, 13, 10, or 14 months after t in that order of preference. Again, this procedure aims to
maximize the number of observations for which I observe a realized employment growth rate. I do
not adjust realized employment growth rates when the initial and final employment levels are not
exactly 12 months apart, but results are similar if I, say, multiply realized employment growth by
12/11 when the final employment level is recorded 11 months after the initial.

Cleaning and Reviewing Forecast Errors Following Altig et al. (2020), I review any fore-
cast errors for sales or employment whose magnitude is greater than one. My realized sales and
employment growth growth measures are arc-percentage changes bounded by plus and minus two,
so forecast-minus-realized sales growth is greater than one in absolute value if, for example, the
manager forecasts zero sales growth but sales subsequently drop by two-thirds. The same applies
to employment.

During this review, I correct common reporting mistakes that result in the appearance of extreme
forecast errors. I use the firm’s the history of responses for sales and employment to guide my
corrections. For example, some firms use inconsistent units to report sales levels. A firm might
report $5 worth of sales in quarter t+ 4 , having reported sales of $4,800,000 in quarter t. Clearly,
the value in quarter t should be $5,000,000. Occasionally, firms report annualized rather than
quarterly sales figures. For example, the firm above might report $20,000,000 in sales in quarter
t+ 4, otherwise reporting sales of around $5,000,000 in quarters t, t+ 1, t+ 2, and t+ 3.

These examples show how, in many cases, it is easy to see that an extreme forecast error is the
result of a reporting mistake. In other cases, there may be no obvious mistake. I flag forecast errors
significantly larger one in absolute value where there is no obvious mistake, and exclude them from
forecast error analyses in the main text and this Online Appendix. In all cases, I document any
corrections or exclusions from forecast error analyses, noting the reason for the edit or exclusion.

A.3 Additional evidence that my empirical measures of overprecision are un-
likely to be driven by measurement error

The key statistic I use to measure the degree of managerial overprecision is the mean excess ab-
solute forecast error: the difference between the average absolute forecast error in the SBU and
the average subjective mean absolute deviation computed from managers’ subjective distributions.
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SBU respondents report sales levels themselves, so realized sales growth between quarter t (when we
record the manager’s beliefs) and quarter t+ 4 (the forecast horizon) is almost certainly measured
with error. For example, managers may report their firm’s current sales level using round numbers
before final accounts are ready. SBU respondents also don’t have strong incentives to be accurate,
so they may report approximate sales levels reported in t and t+ 4. Measurement error could, thus,
increase the average absolute forecast error I observe in the data, driving a wedge between it and
the average subjective mean absolute deviation. In a worst case scenario, this wedge could be fully
responsible for the average excess absolute forecast error I see in the data and which I interpret as
managerial overprecision.

To get a handle on how much measurement error in reported sales matters, I compare the
magnitude of forecast errors in the SBU with the magnitude of errors made by professional analysts
forecasting publicly traded firm’s sales four quarters ahead (the same forecast horizon as the SBU).
Figure A.4a shows the distribution of forecast errors in the SBU as well as the distribution of errors
made by professional analysts in IBES. In the latter case, I take realized sales values from official
financials reported in Compustat.3 We should expect sales data in Compustat to have significantly
less measurement error than there might be in the SBU. In particular, Compustat sales levels
should not be contaminated by the sorts of rounding, inattention, and approximation issues we
might expect in the SBU reported sales data.

Looking at Figure A.4a, it seems SBU managers do make slightly larger forecast errors than
do analysts in IBES. This may be due partly to greater measurement error in the SBU, but we
can also expect SBU firms to be more volatile and therefore have larger forecast errors. Firms in
IBES are some of the larger publicly-traded firms in the US. Since firm-level volatility declines with
firm size (see, for example Davis et al., 2007), it is not surprising that sales of IBES firms are more
predictable than sales of firms my SBU sample of smaller, primarily privately-held firms.

Figure A.4b suggests that it is managers’ subjective distributions that look implausible rather
than the distribution of forecast errors in the SBU. The figure compares the distribution of SBU
forecast errors implied by manager beliefs as reported in the SBU, against the distribution of em-
pirical forecast errors in IBES. I compute the subjective distribution of errors as in Figure 1a of
the main text, assuming realizations are drawn independently from each manager’s subjective dis-
tribution. Looking at the figure, this subjective distribution of errors in the SBU looks implausibly
concentrated around zero. Professional forecasters make much larger errors, and measurement error
is also unlikely to be a major driver of those errors. Thus, the discrepancy between the magnitude
of subjective and actual forecast errors in the SBU is not likely to be the result of measurement
error.

A.4 Is overprecision mechanically related to the SBU’s use of five-point sub-
jective probability distributions?

The SBU elicits managerial beliefs using a five-point discrete distributions. (For example see Figure
A.3 for questions about future sales levels.) Realized sales, employment, and their respective growth

3Owing to the structure and variables available in IBES I construct forecast errors for this exercise somewhat
differently from the main analyses in the paper. IBES reports forecasts and realizations of the level of sales. For
comparability, I construct the implied forecasts for the growth rate of sales (looking four quarters ahead) in IBES
by computing the growth rate implied by the current sales level and the analyst forecast for the future level. In the
SBU, I construct an analogous forecast error, computing the implied subjective expectation for the sales level four
quarters ahead and then the growth rate implied by that expected future level with the current reported level. Then
I define forecast errors in both the SBU and IBES as the difference between these growth forecasts and actual growth
rates. Throughout, I compute growth rates using arc-percentage changes.

6



rates are essentially continuous outcomes, however. This discrepancy raises the concern that my
key measures of overprecision—excess absolute forecast errors—may be mechanically large because
discrete approximations simply have a hard time capturing continuous distributions.

I demonstrate these concerns are unfounded by computing discrete, five-point approximations
of the (continuous) distribution of realized sales growth rates that do not mechanically generate
large excess absolute forecast errors when realizations are drawn from the underlying continuous
distribution.4 I use two methods to approximate the target distribution. Under a first approach
based on the Tauchen (1986) algorithm, I first pick some amount of tail mass p ∈ (0, 1) of the
empirical target distribution5 to disregard. Then, I pick five equidistant support points qi, i =
1, 2, 3, 4, 5 where q1 and q5 are the p

2th and (1 − p
2)th quantiles of the target distribution. Finally,

I assign probabilities to the five support points based on the cumulative distribution F (·) of the
target distribution:

p1 = F

(
q1 + q2

2

)
p2 = F

(
q2 + q3

2

)
− F

(
q1 + q2

2

)
...

p5 = 1− F
(
q4 + q5

2

)
.

Once I have this approximate discrete distribution I use it to construct the forecast E =
∑5

i=1 piqi
and mean absolute deviation MAD =

∑5
i=1 pi‖qi − E‖ implied by the discrete approximation.

Then I find the mean absolute forecast error implied by the discrete approximation’s forecast and
outcomes from the target distribution,MAFE =

∑N
n=1

1
N ‖E−gn‖. Here, n indexes observations of

the empirical sales growth (gn) distribution I am targeting. Finally, I compute the excess absolute
forecast error generated by my discrete approximation, EAFE = MAFE−MAD, the same measure
of overprecision I use in the main text.

Table A.1a shows how this excess error changes when I discretize and ignore the outermost p
mass of the target empirical distribution. Ignoring modest amounts of tail mass (p ≤ 0.2) results in
modest excess absolute forecast errors, on the order of a couple of percentage points. Ignoring the
outermost 40 percent of the mass (i.e. placing the outermost points at the 20th and 80th percentiles
of the target distribution) only generates an excess absolute forecast error half as large as the excess
error I observe empirically.

I find similar results using an second method to approximate the continuous realized growth rate
distribution. The mean probability vector SBU respondents assign is approximately (p1, p2, p3, p4, p5)

′ =
(0.1, 0.2, 0.4, 0.2, 0.1)′, implying a unimodal distribution. I then use the corresponding quantiles of
the target empirical distribution (again, disregarding some of the outermost mass p ∈ (0, 1)) to
select the five support points of the discrete distribution. Namely, pick qi, i = 1, 2, 3, 4, 5 such

4Indeed, the literature that works with discrete-time dynamic programming models has used discrete approx-
imations to Gaussian Markov processes at least since Tauchen (1986) without major concerns that the discrete
approximations mechanically understate the dispersion of the stochastic process in question.

5To be specific, my target distribution is the empirical distribution of sales growth realizations purged of hetero-
geneity due to differences in managers’ subjective expectations. Purging this heterogeneity involves regressing realized
sales growth on SBU managers’ ex-ante forecasts and working with the residual from this regression. Residualizing
ensures that the variance of my target continuous distribution reflects unpredictable variation in realized sales growth
rather than predictable variation that managers have in their own information sets.

7



that:

p1 = F

(
q1 + q2

2

)
p2 = F

(
q2 + q3

2

)
− F

(
q1 + q2

2

)
...

p5 = 1− F
(
q4 + q5

2

)
where F (·) now is the CDF of the target distribution truncated at its p

2th and (1− p
2)th quantiles.

I then use this discrete approximation to construct measures of excess error EAFE as for the
"Tauchen" approach above. Table A.1b shows that using this quantile-based approach also does
not mechanically generate large excess absolute forecast errors when ignoring modest amounts of
tail mass p. For p = 0.4, the implied excess error is even smaller at 0.058 than for the "Tauchen"
approach. Thus, using reasonable methods to discretize the target distribution have a hard time
generating the large excess absolute errors that characterize the SBU data.

Where does managerial overprecision come from, then? Looking at Figure 1a in the main text,
we can see that managers’ subjective distributions overestimate the probability of near-zero forecast
errors. Managers place nearly 75 percent probability on the possibility that forecast sales growth
will be within 5 percentage points of realizations. Empirically, this only happens with about 25
percent probability. Managers in turn underestimate the probability of being off their forecasts by
about 10 to 15 percentage points, which is actually very much within the realm of normal (the
standard deviation of actual forecast errors is close to 0.26). These patterns suggest managers place
the five support points of their subjective distributions too close together, and that is the proximate
cause of their overprecision.

Altig et al. (2020) also show that if we interpret respondent distributions as a continuous dis-
tribution with five bins, each centered around one of the support point scenarios, the implied
subjective expectations and uncertainty are nearly identical to the ones we obtain from the discrete
distributions in the SBU. This is additional evidence that the discrete nature of the SBU does not
mechanically generate overprecision.

A.5 Additional Evidence on Overextrapolation

This section provides additional evidence that managers responding to the SBU overextrapolate
from current conditions when they form beliefs about future sales growth.

A.5.1 Breaking down the relationship between forecasts, realizations, and recent sales
growth

Figure A.5a shows that managers appear to underestimate mean reversion of short-term shocks.
The figure shows two bin-scatter plots, for forecast and realized sales growth for quarters t to t+ 4
separately on the vertical axis, against lagged sales growth from t − 1 to t on the horizontal axis.
Managerial forecasts for sales growth from t to t + 4 are essentially flat against the firm’s lagged
sales growth from t − 1 to t. By contrast, realized sales growth for t to t + 4 correlates negatively
with the firm’s lagged sales growth. This pattern suggests managerial forecasts fail to internalize
mean reversion in the current shock to sales growth, making forecast errors predictable because this
decay is predictable. Managers, thus, appear to overextrapolate from shocks to sales levels rather
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than from growth rates. This result justifies my choice of a stationary, mean-reverting process for
firm-level shocks and managerial beliefs that underestimate the rate of mean reversion (overestimate
the persistence).

One concern with Figure A.5a is that it heightens concerns that my measure of overextrapolation
may be driven by transitory measurement error in reported sales levels, which would mechanically
generate the negative correlation between lagged sales growth from quarters t− 1 to t and realized
sales growth between t and t + 4. I address this concern below in Figure A.5c and in the main
text, where I incorporate measurement error in my estimation of the structural model and find that
measurement error alone cannot explain why lagged sales growth for t− 1 to t has predictive power
for forecast errors for sales growth in t to t+ 4.

A.5.2 Forecast errors are negatively correlated with past forecast errors

Figure A.5b shows a bin-scatter plot of forecast errors on lagged forecast errors, showing a clear
negative relationship. The horizontal axis plots twenty quantiles of forecast minus realized sales
growth for quarters t − 4 to t against the mean forecast-minus-realized sales growth for t to t + 4
on the vertical axis. Managers that fall on the right half of the graph made forecasts in t− 4 that
ended up overestimating the firm’s actual sales growth between t− 4 and t. Those same managers
subsequently make forecasts in t for sales growth between t and t+ 4 and end up underestimating.
This pattern is consistent with my finding in the main text that managers overextrapolate. Namely,
those who receive a negative shock between t−4 and t perceive that negative shock to be particularly
persistent and thus end up underestimating as they look forward from t to t+ 4.

In Table A.2, I show estimates from the regression depicted in Figure A.5b, as well as from
specifications that weight by employment, or include date, sector-by-date, and firm fixed effects.
The negative relationship is robust across all specifications, although the coefficient in columns (5)
and (6) with firm and date fixed effects are materially larger. This is probably because I am working
with a short panel (covering October 2014 to May 2019) so the dynamic panel specification in that
column may be upward biased (e.g. see Arellano and Bover, 1995).

Altig et al. (2020) also report that forecast revisions across survey waves predict future forecast
errors in ways that are consistent with overextrapolation.

A.5.3 Forecast errors are positively correlated with a second measure of lagged sales
growth

Figure A.5c shows that managerial forecast errors in the SBU are positively related with reported
sales growth for the twelve months prior. In contrast with other tests for overextrapolation, this
figure uses a past sales growth measure based on the SBU’s look-back question from Figure 2 in the
main text. This result is particularly useful because this look-back measure of past sales growth is
unlikely to be mechanically contaminated by transitory measurement error in sales levels.6 Indeed,
these reported past sales growth data have a lower dispersion than quarter-on-quarter measured
sales sales growth. The positive relationship in Figure A.5c suggests transitory measurement error
is not the primary driver of my tests for overextrapolation.

Table A.3 shows that the relationship between reported past sales growth and forecast errors is
6I restrict attention to survey waves after September 2016 in which the look-back question is phrased in terms of

growth rates. Prior to September 2016, the look-back question referred to levels, so a measure of past sales growth
based on the look-back question and the current sales question could be contaminated by the sort of transitory
measurement error that could generate the appearance of overextrapolation.
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robust to controlling for date, sector-by-date, and firm fixed effects, or weighting by employment.
The final two columns includes both firm and date fixed effects and find larger slope coefficients,
again, potentially due to biases that are common in dynamic panel regression models. The overall
picture, however, is that the relationship between reported past sales growth and forecast errors is
robust.

A.5.4 Overextrapolation does not explain away managerial overprecision

Since overextrapolation documents a bias in manager forecast errors conditional on past sales growth
(or past forecast errors), it mechanically generates larger absolute forecast errors than managers
expect ex-ante. Thus, overextrapolation could be driving the large discrepancy in subjective and
empirical absolute errors that I take as evidence of overprecision.

To test this hypothesis, Figure A.5d shows a bin-scatter plot with the absolute value of lagged
sales growth, from quarter t− 1 to t on the horizontal axis, and the excess absolute forecast errors
(i.e. empirical absolute errors minus subjective mean absolute deviations) on the vertical axis.
The figure shows a positive relationship, consistent with the previous paragraph. But firms with
near-zero recent past sales growth still appear overprecise. The microdata regression estimates
a highly significant, positive constant term of 0.117 with a standard error of 0.024. Thus, while
overextrapolation does amplify the discrepancy between empirical and subjective absolute errors, it
is by no means the driving factor.

A.6 Managerial Optimism, Overprecision, and Overextrapolation about Future
Employment

Although I focus on biases in managerial beliefs about future own-firm sales growth in the main
text, Facts 1 to 3 are similar for beliefs about future employment. Thus, Facts 1 to 3 appear to be
robust features of managerial beliefs rather than spurious results that are only present in the SBU’s
sales data.

Table A.4 summarizes these results about managerial optimism/pessimism, overprecision, and
overextrapolation about own-firm future employment growth. In Panel A, we can see that managers’
appear somewhat pessimistic about their firm’s future employment growth on average. Realized
employment growth exceeds its ex-ante forecast by about 0.016 on average. The difference between
forecast and realized is statistically significantly different from zero with 99 percent confidence, using
firm-clustered and double clustered standard errors by firm and date.

As with sales, this apparent pessimism is not very robust, and arguably not economically sig-
nificant. First, the magnitude of the difference between forecast and realized employment growth
is comparable to the analogous measure for sales growth (about -0.013). The estimate is also small
relative to the standard deviation of employment growth forecast errors, which is 0.16. Weighting
by employment, the magnitude of the point estimate goes down by about 50 percent and stops
being statistically significant. Taking a closer look and computing the mean forecast-minus-realized
employment growth for ten deciles of the employment distribution, it is clear that the negative point
estimate is driven by the smallest firms, who as of mid-2019 are likely benefitting from better than
expected macroeconomic conditions. The same patterns are true for my analysis of sales growth
forecast errors in the main text.

Panel B of Table A.4 shows that managers are overprecise about future employment growth
rates. While the mean absolute forecast error for employment growth is close to 0.10, managers’
subjective distributions would imply a mean absolute error should about 30 percent as large. This
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means there is an excess absolute error of about 0.071.
Turning now to Panel C, we can see that forecast minus realized employment growth for months

t to t+12 correlates significantly with firms’ employment growth in months t−2 to t. In the second
and third columns I include date and firm fixed effects to show that the predictability of forecast
errors is not driven by aggregate shocks or by persistent differences across firms.
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Figure A.1: SBU Representativeness

(a) Share of Employment by Firm Size:
SBU vs. US Economy

(b) Share of Employment by Firm Age:
SBU vs. US Economy

(c) Share of Employment by Sector:
SBU vs. US Economy

(d) Share of Employment by Region:
SBU vs. US Economy

(e) Share of Firms and Employment by
Whether Publicly-traded

Notes: The above figures showthe share of employment across all SBU responses from 10/2014 to 7/2018 and in the
US economy based on the US Census Bureau’s 2015 Statistics on US Businesses or Business Dynamics Statistics for
firms by: (top left) size category, (top right) year of birth (i.e. year the firm hired its first paid employee), (middle left)
sector, and (middle right) Census Division. The bottom figure shows: (1) the share of firms in the SBU that reported
their shares being listed on a stock exchange or traded in over-the-counter markets during the January-February 2019
special questions on firm ownership; (2) the share of employment across all SBU responses from 10/2014 to 5/2019
made by firms who reported their shares being listed on a stock exchange or traded in over-the-counter markets.
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Figure A.2: SBU Sampling Patterns

(a) Share of Employment in the SBU’s Sampling Frame,
Contacted Firms, and SBU Responses vs. the US Econ-
omy (b) Sampling Probability Increases with Firm Size

Notes: The left figure shows the share of employment accounted for by firms in each of the size
categories listed on the vertical axis, respectively in (1) The US economy, based on the Census’ 2015
Statististics on US Businesses; (2) the SBU’s sampling frame; (3) the sample of firms that the SBU
recruiting team successfully made contact with; (4) the sample of all SBU responses from 10/2014
to 5/2019. The right figure shows a bin-scatter of the empirical probability of being successfully
contacted by the SBU’s recruiting team in each of 100 employment quantiles of the SBU Sampling
Frame.
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Figure A.3: Sales Questions in the Survey of Business Uncertainty prior to September
2016

Notes: Sales growth questions in the Survey of Business Executives as they appeared prior to
September 2016. In months prior to September 2016, the SBU asked for sales growth beliefs in
levels rather than growth rates. See Appendix Figure
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Figure A.4: Forecast Errors in the SBU vs. IBES

(a) Empirical Distributions of Forecast Errors in SBU & IBES

(b) Subjective Distribution of Forecast Errors in the SBU vs.
Empirical Distribution in IBES

Notes: The top figure shows; (1) the empirical distribution of managers’ forecast errors for sales growth looking
four quarters ahead from the SBU; (2) the empirical distribution of analyst forecast errors for sales growth four
quarters ahead from IBES. The bottom figure shows (1) the subjective distribution of managers’ forecast errors for
sales growth looking four quarters ahead from the SBU (i.e. the distribution of forecast errors implied by managers’
subjective probabilities) ; (2) the empirical distribution of analyst forecast errors for sales growth four quarters ahead
from IBES. The SBU sample includes 2,580 forecast error observations from 446 firms between 10/2014 and 5/2019.
The IBES sample includes 755,685 analyst forecast errors.
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Figure A.5: Additional Evidence on Overextrapolation

(a) Managers Ignore Mean Reversion(b) Serial Correlation in Forecast Errors

(c) Overextrapolation from Reported
Sales Growth (d) Overprecision or overextrapolation?

Notes: (Top left) This figure shows bin-scatters of forecast and realized sales growth between t and t + 4 on the
vertical axis against realized sales growth between quarters t− 1 and t, just prior to the survey response. A forecast
error observation consists of a response in quarter t with a well-formed subjective probability distribution for sales
growth, looking 4 quarters ahead, for which I also observe realized sales growth between quarters t and t + 4. (Top
right) This figure shows a bin-scatter plot of forecast minus realized sales growth over quarters t to t + 4 on the
vertical axis against forecast minus realized sales growth over quarters t − 4 to t. (Bottom left) This figure shows
a bin-scatter plot of forecast minus realized sales growth over quarters t to t + 4 on the vertical axis against the
managers’ reported sales growth for quarters t− 4 to t. (Bottom right) This figure shows a bin-scatter plot of excess
absolute forecast errors (absolute forecast error minus subjective uncertainty) for sales growth over quarters t to t+ 4
on the vertical axis against the absolute value of sales growth from quarters t − 1 to t.Data are from the SBU and
the sample period includes all months between 10/2014 to 5/2019, except the bottom figure which restricts attention
to 9/2016 and later when we asked the look-back past sales growth question in terms of growth rates.
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Table A.1: Discretizing Empirical Distributions

(a) "Tauchen" (Equidistant-Bins) Approach

Mass Excluded (p) 0.01 0.05 0.1 0.2 0.4 Data
Excess Absolute Fcast. Error 0.030 0.022 0.027 0.043 0.077 0.148

(b) Quantile Approach

Mass Excluded (p) 0.01 0.05 0.1 0.2 0.4 Data
Excess Absolute Fcast. Error -0.0153 0.015 0.031 0.0446 0.058 0.148

Notes: The above tables show the excess absolute forecast error that would arise from approximating the empirical
distribution of realized sales growth between quarters t and t + 4 under the "Tauchen"-based, and Quantile-based
approaches to discretization. Before discretizing, I remove heterogeneity in realized sales growth attributable to
dierences in subjective first moments, leaving the empirical distribution of realized sales growth for the typical
expectation and subjective uncertainty across all 2,580 forecast error observations in the SBU covering the 10/2014
to 5/2019 sample period. See section A.4 of the Online Appendix for a full description of the two discretization
approaches.

Table A.2: Managers Overextrapolate: Forecast Errors are Serially Correlated

(1) (2) (3) (4) (5) (6)
Dependent Variable Forecast - Realized Sales Growth, quarters t to t+ 4

Forecast - Realized Sales Growth, -0.179*** -0.159** -0.182*** -0.185*** -0.309*** -0.317***
quarters t− 4 to t (0.067) (0.067) (0.040) (0.045) (0.042) (0.052)

(0.052)
Constant

Date FE Y Y Y
Date x Sector FE Y
Firm FE Y Y
Employment-weighted Y Y

Observations 1,351 1,332 1,351 1,257 1,316 1,298
R-squared 0.032 0.027 0.052 0.232 0.348 0.499
Within R-squared 0.033 0.033 0.089 0.121

Notes: Robust standard errors in parentheses, clustered by firm. Data are subjective probability distributions and
forecast errors about sales growth looking 4 quarters ahead from the Survey of Business Uncertainty covering all
months between October 2014 and May 2019. An observation is a forecast error for a particular firm in a particular
month. *** p<0.01, ** p<0.05, * p<0.1
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Table A.3: Managers Overextrapolate: Based on Reported Sales Growth

(1) (2) (3) (4) (5) (6)
Dependent Variable Forecast - Realized Sales Growth, quarters t to t+4

Reported Sales Growth, 0.205** 0.197* 0.216*** 0.216*** 0.375*** 0.509***
12 months up to t (0.081) (0.112) (0.082) (0.073) (0.063) (0.087)

Date FE Y Y Y
Date x Sector FE Y
Firm FE Y Y
Employment-weighted Y Y

Observations 2,076 2,074 2,076 2,048 2,015 2,013
R-squared 0.012 0.008 0.0297 0.171 0.333 0.413
Within R-squared 0.013 0.013 0.035 0.060

Notes: Robust standard errors in parentheses, clustered by firm. Data are subjective probability distributions and
forecast errors about sales growth looking 4 quarters ahead from the Survey of Business Uncertainty covering all
months between October 2014 and May 2019. An observation is a forecast error for a particular firm in a particular
month. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Beliefs about Future Employment Growth

(1) (2) (3)

Panel A. Optimism
Employment Growth Forecast Error

Forecast Realized Forecast - Realized

Mean 0.010 0.024 -0.015
Firm-clustered SE (0.003) (0.005) (0.004)
Firm and date-clustered SE (0.003) (0.005) (0.004)
Obs. 3,095 3,095 3,095
Firms 510 510 510

Panel B. Overconfidence
Absolute Forecast Error Excess Error
Empirical Subjective Empirical - Subjective

Mean 0.044 0.107 0.063
Firm-clustered SE (0.003) (0.005) (0.004)
Firm and date-clustered SE (0.003) (0.005) (0.004)
Obs. 3,095 3,095 3,095
Firms 510 510 510

Panel C. Overextrapolation
Dependent Variable Forecast - Realized Emp. Growth, months t to t+ 12

Emp. Growth, months. t− 2 to t 0.237 0.238 0.352
(0.051) (0.052) (0.053)

Date FE Y Y
Firm FE Y
Obs. 2,165 2,165 2,104
Firms 376 376 315
R-squared 0.039 0.050 0.398
Within R-squared 0.039 0.107

Notes: Panel A (top) reports the mean employment growth forecast for the next 12 months, the mean employment
growth realization, and the mean employment growth forecast error (equal to forecast minus realized). Panel B
(middle) reports the mean empirical absolute forecast error, mean subjective absolute forecast error (i.e. the mean
subjective absolute deviation) and the mean excess absolute forecast error (empirical minus subjective error). Panel
C (bottom) reports the coefficient form a regression of forecast minus realized employment growth for months t to
t + 12 on the firm’s lagged employment growth between months t − 2 to t. Data are from the SBU at include all
survey waves between 10/2014 and 5/2019.
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B Model Appendix

B.1 Definition of Aggregate Quantities

Here I provide formal definitions for aggregate quantities in the model economy from Section 3 of
the main text. I use Φ(z, n) to denote the measure of firms in the economy with business conditions
z and labor n.

Aggregate output or GDP in my model economy is the sum of value added across all firms less
spending on adjustment costs:

Y =

ˆ
Z×N

[
znα − λ

(
κ(z, n)− (1− q)n

n

)2

n

]
dΦ(z, n)

= Ŷ −AC.

Ŷ denotes gross output (before subtracting adjustment costs) and AC denotes total spending on
adjustment costs. This definition of GDP is crucial for my analysis about the aggregate implications
of biases in managerial beliefs, as described in Section 3 of the main text. I subtract adjustment
costs from GDP assuming those resources do not constitute income for any agents in the economy
and instead are intermediate business expenses that diminish profits and value added.

Recall that managers in the model are risk neutral and own a share θ =∈ (0, 1] of the firm
they operate. They consume θ times the firm’s current cash flow π(·), while the rest of the firm’s
cash flow belongs to the representative consumer. As stated in the main text, the household then
receives capital income (1− θ)Π, where

Π =

ˆ
Z×N

π(z, n, κ(z, n);w)dΦ(z, n)

=

ˆ
Z×N

[
znα − wn− λ

(
κ(z, n)− (1− q)n

n

)2

n

]
dΦ(z, n)

and κ(z, n) is the hiring policy of a manager at a firm with state (z, n).
It follows that aggregate output must be equal to the household’s consumption plus the man-

agers’ consumption, or equivalently the sum of all labor and capital income in the economy:

Y = C + θΠ

= wN + Π

B.2 Firm Value and Welfare Change Formulas

To compute the change in the net present value of cash flows a firm would obtain from hiring a
counterfactual manager who has rational expectations (or more generally, another beliefs process)
I use the following steps.

First, I solve for the original and replacement manager’s respective policy functions, κ(·) and
κc(·) (see Section C below). I use those policy functions to compute the objective net present value
of cash flows generated by each manager, V (·) and V c(·). (See Appendix C.3 for more details on
this computation.) The average percent change in firm value (holding all else equal) obtained from
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replacing the original manager for the counterfactual manager is then:

E[∆V ] % = 100 ·
ˆ
Z×N

[
V c(z, n)

V (z, n)
− 1

]
dΦ(z, n).

The operator E[·] computes expectations with respect to the model’s stationary distribution Φ(z, n).
The percent difference in welfare (in consumption units) between my baseline economy with

stationary equilibrium consumption and aggregate labor C and N , and a counterfactual economy
with consumption and labor Cc and Nc, is given by 100× ξ , where ξ satisfies:

∞∑
t=0

βt
[

[C(1 + ξ)]1−γ

1− γ
− χN

1+η

1 + η

]
=

∞∑
t=0

βt

[
C1−γ
c

1− γ
− χN

1+η
c

1 + η

]
.

The above equation has a closed form solution for ξ:

ξ =

[
C1−γ
c − χ1−γ

1+η [N1+η
c −N1+η]

]1−γ
C

− 1.

In practice, my welfare counterfactuals solve for ξ numerically, but I have verified that the numerical
solution is accurate in comparison with the above closed form solution.

B.3 Capital and Intermediate Goods in my Baseline Model

My baseline model assumes sales are a function of only labor, ignoring capital and intermediates.
I focus on employment rather than investment dynamics because the quality of employment data
in the SBU being much higher than the quality of investment data. Nearly 90 percent of SBU
firms are privately-held and the survey responses are anonymized for confidentiality. Thus, even
with a de-anonymized version of the data, it would be nearly impossible to obtain financials and
investment data, since the US does not have a comprehensive database of private businesses’ financial
statements. Section 6 of the main text considers an extended model with both capital and labor
that I calibrate using some of my estimated parameters and investment moments reported in the
literature.

Given my estimate of the returns to scale in the firm’s production function is between 0.8 and
0.9 and my estimate that there are nontrivial adjustment costs, readers may want to interpret my
setup without physical capital as follows. Suppose the true underlying model has two factors of
production—labor and capital. Suppose capital investment is subject to adjustment costs and one-
period time-to-build, under uncertainty about the next period’s firm-level profitability shock zt+1.
Firms choose labor statically, based on their current capital kt and shock zt. Estimating my one-
factor model on the data tracking labor dynamics will largely track movements in physical capital
subject to capital adjustment costs.

My specification for firm revenue abstracts from intermediate goods that may also be a factor of
production. This assumption can be weakened to allow firms to consume some of the final good in the
economy as an intermediate. If the underlying production function for gross output is Cobb-Douglas,
and the firm’s choice of intermediate inputs is static, then the value-added production function would
also be Cobb-Douglas and proportional to the gross output production function. Such a setup would
be consistent and isomorphic with my baseline assumption that ignores intermediates.
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C Simulation Appendix

C.1 Model Solution Details

Here I provide some additional details about the algorithm and computational choices I use to solve
managers’ dynamic hiring problem from the model in main text.

I solve for managers’ value and policy functions over a discretized (z, n) state space employ-
ing value function iteration, aided by Howard’s improvement algorithm. I choose grids of size
(z, n) = (21, 100) since managers’ dynamic program is standard and, by contemporary standards,
not computationally intensive with only two state variables. As is standard for numerical dy-
namic programming I make my grid for possible labor choices n linear in log-space and make the
end-points of the grid far out enough so that under the stationary distribution of the estimated
model φ(z, n) there is zero probability of ending up in the highest and lowest grid points, i.e. so
maxz{φ(z, n1), φ(z, n100)} < 10−5. For my baseline estimation of the model I set the lowest and
highest grid points at n1 = 0.05 and n100 = 5.

C.1.1 Discretizing the subjective and objective driving processes

I approximate both the objective and subjective stochastic processes for log(zt) using two discrete
Markov chains whose support is a common set of grid points, implementing the Tauchen (1986)
algorithm. I use a relatively dense grid (21 points) to ensure to obtain accurate approximations
of the conditional first and second moments of both the subjective beliefs process and objective
stochastic processes on the same grid. (See Section 3 in the main text for the specification of the two
processes.) Representing the two stochastic processes on the same discrete grid is computationally
convenient and implies managers are only wrong about the probability of a given event happening,
but they are correct about the set of events that may happen.

I center the grid for log(zt) around zero since the objective stochastic process is mean zero (a
normalization) and the subjective stochastic processes is approximately mean zero (which follows
from Fact 1 in the main text). Given vector of conditional volatilities and persistence parameters
for the two processes {σ, σ̃, ρ, ρ̃}, I set the highest and lowest grid points at ±2.575 ∗

√
σ̂2

1−ρ̂2 where

σ̂ = max{σ, σ̃} and ρ̂ = max{ρ, ρ̃}. The grid thus covers 99 percent of the support of a mean zero
Gaussian AR(1) process whose unconditional standard deviation is the largest possible given some
combination of one the conditional volatilities σ and σ̃ and one of the persistences ρ and ρ̃.

C.1.2 Computing managers’ optimal policies and subjective firm valuations

Given some value of the stationary equilibrium wage w and risk-free rate r, I solve for managers’
optimal subjective valuation of the business in numerically using standard techniques. Specifically,
I use value function iteration aided by Howard’s improvement algorithm over a discretized (z, n).
The only noteworthy detail for this procedure is I use managers’ subjective beliefs process (instead
of the true stochastic process) to compute manager expectations of the firm’s future (subjective)
value.

Starting with a guess for the managers’ subjective valuation of the firm Ṽ0(zt, nt;w, r) I solve for
the policy nt+1 = κ0(zt, nt) that solves the optimization problem below, taking as given my guess
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for Ṽ0(·) and prices w and r:

κ0(zt, nt) = arg max
nt+1

π(zt, nt, nt+1;w) +
1

1 + r
Ẽ[Ṽ0(zt+1, nt+1;w, r)]. (3)

See Section 3 of the main text for the definition of the cash flow function π(zt,nt, nt+1;w). The Ẽ[·]
operator takes expectations with respect to the managers’ subjective stochastic process for future
firm-level shocks zt+1.

Then, I implement Howard’s improvement algorithm. First, I apply the Bellman operator that
implements the policy κ0(·) for a fixed number T of periods. So for τ = 1, 2, ..., T ,

Ṽτ (zt, nt;w, r) = π(zt, nt, κ(zt, nt);w, r) +
1

1 + r
Ẽ[Vτ−1(zt+1, κ(zt, nt);w, r)] (4)

Then, I obtain a new guess for the optimal policy function κ1(·) by applying the maximization in
(3) using ṼT (·) in place of Ṽ0(·) for my guess for the manager’s subjective valuation of the firm.

If the distance between the previous and current guesses of the policy function is under some
pre-specified tolerance, then κ1(·) is the manager’s optimal policy. That is, if

max
z,n
‖κ1(z, n)− κ0(z, n)‖ < ε.

If the maximum distance between κ0(·) and κ1(·) exceeds ε, I instead treat κ1(·) as a new guess
of the policy function and once again apply Howard’s improvement algorithm in 4 to obtain a new
guess for the policy function.

In practice I set ε = 10−20 and T = 300. Once I know the optimal policy, it is straightforward
to iterate on it to obtain a solution for the managers’ subjective valuation of the firm Ṽ (·), namely
by applying the procedure in equation 4 using the optimal policy κ1(·).

C.1.3 Computing the stationary distribution of firms across the state space

After solving for the manager’s policy function κ(z, n), I compute the stationary distribution of
firms across the discretized state space of the model, φ(z, n), numerically. Specifically, I exploit
the Markovian structure of the model and employ a non-stochastic simulation algorithm based on
Young (2010).

To start, I guess that the stationary distribution is uniform across the discrete grid of states
(z, n), calling this initial guess φ0(z, n). Thus, for any pair of grid points (zj , nk), φ0(zj , nk) =
(z · n)−1, j ∈ {1, 2, ..., 21} and k ∈ {1, 2, ..., 100}.

I obtain a new guess for the stationary distribution φ1(z, n) by moving the mass at each point
(z, n) in the state space forward according the dynamics of the model. All firms with profitability
zj and labor nk on date t choose labor κ(zj , nk) for period t+ 1. But their profitability in t+ 1 is a
random variable with the following distribution: Pr(zt+1|zt = zj), which depends on the objective
stochastic process for z. Following these dynamics, a fraction of the mass at that is at point (zj , nk)
in period t ends up at point (zp, κ(zj , nk)) in t+ 1, for p = 1, 2, ..., 21. The mass that moves to this
point is equal to φ(zj , nk) · Pr(zt+1 = zp|zt = zj), where the first factor is the mass originally at
(zj , nk) and second term captures the stochastic movement of profitability between t and t + 1. I
repeat this procedure for each point in the state space.

After moving all of the mass forward from period t to t+ 1 I have obtained a new distribution
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of firms across the state space φ1(z, n). I then compute the distance between this new distribution
function and the previous one,

d = max
z,n
‖φ1(z, n)− φ0(z, n)‖.

If d is under a pre-specified tolerance, I deem φ1(z, k) to be the stationary distribution φ(z, k).
Otherwise, I repeat the procedure iteratively until the distance between φτ+1(z, k) and φτ (z, k) is
less than the tolerance. In practice, I use a tolerance of 10−20, so I only obtain convergence of
stationary distribution once the distribution is virtually identical to the previous one.

C.1.4 Computing the labor market equilibrium

Given any guess for the wage w I can compute managers’ optimal policies κ(z, n) and the stationary
distribution of firms φ(z, n). Using the stationary distribution φ(·;w) I can then test whether the
labor market is in equilibrium. First, I compute the household’s consumption C = wND+(1−θ)Π,
where ND =

´
Z×N n · φ(z, n;w)dzdn is aggregate labor demand and (1 − θ)Π is the household’s

total capital income under the current guess for the manager’s policies and the wage. (Recall that
the household owns a share 1 − θ of firm equity, with the remaining share owned by managers).
Then I find the household’s desired labor supply N s given C and w according to its intra-temporal
labor-leisure tradeoff (see Section 3 of the main text). I thus obtain excess labor demand ND−NS ,
which must be zero in equilibrium. I employ a standard nonlinear one-dimensional solver in Matlab
to find a wage w for which excess labor demand is near zero.

C.1.5 Computing moments for the population of firms in the economy

Since I compute the equilibrium stationary distribution of firms φ(z, n) numerically, it is straightfor-
ward to use this object to compute population moments for the firms in the model. This procedure
avoids drawing random numbers that add simulation error to model-implied moments.

For illustration, consider any outcome X(z, n) that is a function of the state space in the model.
The mean value ofX(z, n) is then E[X(z, n)] ≡

∑
z,nX(z, n)·φ(z, n) where E[·] takes the expectation

with respect to the stationary distribution of firms in the model’s equilibrium. For moments of
dynamic variables, like the firms’ sales growth that depend, say, on a firm’s shock next period
zt+1 in addition to the current state (zt, nt) I first compute the dynamic distribution φ̃(z, n, z′) =
φ(z, n) ·Pr(zt+1 = z′|zt = z). Then, I compute the moment as a weighted average of the outcomes,
with the weights given now by the dynamic distribution: E[X(z, n, z′)] ≡

∑
z,nX(z, n, z′)·φ̃(z, n, z′).

C.2 Computing Managerial Beliefs About Sales and Employment Growth Be-
tween Quarters t and t+ 4

Relative to the typical dynamic model of firms in heterogeneous-agent macro and corporate finance,
my model is simple and computationally tractable. Given some parameters, solving for equilibrium
typically takes about 10 to 15 seconds on my quad-core 3.6 GHz 2017 iMac with 32GB of RAM.

Obtaining managerial beliefs about sales and employment growth between quarters t and t+ 4,
however, is more computationally intensive. These beliefs are necessary to obtain model moments
about managerial forecasts, subjective uncertainty, and forecast errors, which are key to estimating
the managers’ subjective stochastic process, namely {̃µ, σ̃, ρ̃}. Specifically, sales in period t+ 4 are
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a function of the firm’s idiosyncratic shock and the firm’s labor in period t+ 4:

ŷt+4 = zt+4n
α
t+4.

From the standpoint of quarter t and the firm’s current state (zt, nt), this object is a random variable
depending on all possible paths of shocks between t and t+ 4, ζ = {zt+1, zt+2, zt+3, zt+4}, since

nt+4 = κ(zt+3, nt+3)

= κ(zt+3,κ(zt+2, nt+2))

= κ(zt+3,κ(zt+2, κ(zt+1, nt+1)))

= κ(zt+3,κ(zt+2, κ(zt+1, κ(zt, nt))))).

So conditional on (zt, nt), ŷt+4 is a random variable that occurs with a given probability Pr(ζ|zt),
which is a four-dimensional probability mass function since ζ has four dimensions. Computing a
managers’ forecast for future sales growth, as well as an objective forecast, is therefore computa-
tionally expensive because it needs to consider all possible shock paths between t and t+ 4. Since
my grid for potential z-shock values has 21 points, computing a forecast for sales growth between
t and t + 4 for a given point in the state space (zt, nt) involves a summation with 214 = 194, 481
terms.

To lower the amount of memory required for the above computations, I exploit the law of
iterated expectations to compute beliefs and forecast error moments in the model. To begin, I store
the conditional subjective and objective expectation for sales growth between t and t+4 conditional
on (zt, nt) in memory:

Ẽ[∆yt,t+4(zt, nt)] =
∑
ζ

P̃ r(ζ|zt)∆yt,t+4(zt, nt, ζ)

E[∆yt,t+4(zt, nt)] =
∑
ζ

Pr(ζ|zt)∆yt,t+4(zt, nt, ζ)

where P̃ r(ζ|z) and Pr(ζ|z) denote the subjective and objective probability measures with respect
to shocks that might occur between t and t+ 4 conditional on zt = z. Then, I obtain forecast error
moments in the population of firms by averaging across firm’s stationary distribution φ(z, n). For
example:

E[ForecastErrort,t+4] = E
[
Ẽ[∆yt,t+4]−∆yt,t+4

]
= E

[
Ẽ[∆yt,t+4(z, n)]−E[∆yt,t+4(z, n)]

]
=

∑
z,n

φ(z, n) ·
[
Ẽ[∆yt,t+4(z, n)]−E[∆yt,t+4(z, n)]

]
where the E[·] operator takes expectations across the state space after conditioning on (z, n) rather
than across future shocks.

I use a similar procedure to obtain managers’ subjective mean absolute deviations from their
forecast. First, I obtain the subjective mean absolute deviation conditional on (zt, nt) and store it
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in memory:

M̃AD(zt, nt) = Ẽ
[
‖∆yt,t+4(zt, nt)− Ẽ[∆yt,t+4(zt, nt)]‖

]
=

∑
ζ

P̃ r(ζ|zt) ·
[
‖∆yt,t+4(zt, nt, ζ)− Ẽ[∆yt,t+4(zt, nt)]‖

]
Then I do the same for objective absolute forecast error conditional on (zt, nt):

E[AbsForecastErrort,t+4(zt, nt)] = E
[
‖∆yt,t+4(zt, nt)− Ẽ[∆yt,t+4]‖

]
=

∑
Pr(ζ|zt) ·

[
‖∆yt,t+4(zt, nt, ζ)− Ẽ[∆yt,t+4(zt, nt, ζ)]‖

]
.

Applying the law of iterated expectations, I compute the mean excess absolute forecast error in the
model:

E[ExcessAbsForecastErrort,t+4] = E
[
AbsForecastErrort,t+4 − M̃AD

]
= E

[
E[AbsForecastErrort,t+4(zt, nt)]− M̃AD(zt, nt)

]
=

∑
z,n

φ(z, n) ·
[
E[AbsForecastErrort,t+4(z, n)]− M̃AD(z, n)

]
where again E[·] takes the expectation across the stationary distribution after conditioning at each
point in the state space. Recall that the excess absolute forecast error is my crucial target for
disciplining the relative magnitude of managers’ subjective uncertainty about shocks to log(zt), σ̃,
relative to the true volatility of those shocks σ.

I also apply the law of iterated expectations in a similar fashion to compute the forecast error
moment that helps pin down managers’ perception of shock persistence ρ̃ relative to the true per-
sistence ρ. Namely I compute the covariance between sales growth between t − 1 and t and the
forecast error for sales growth between t and t+ 4:

Cov(∆yt, ForecastErrort,t+4) = E

 (∆yt(zt, nt)− E[∆yt(zt, nt)]) ·(
ForecastErrort,t+4(zt, nt)

−E[ForecastErrort,t+4(zt, nt)]

)  . (5)

Although seemingly straightforward, computing this moment is slightly more complicated as ∆yt
is really a function of (zt−1, nt−1, zt) so I need to take the expectation E[·] using the distribution
φ̃(z, n, z′) = φ(z, n) · Pr(zt+1 = z′|zt = z). Applying the law of iterated expectations here crucially
relies on ∆yt being deterministic conditional on (zt−1, nt−1, zt) which greatly reduces the number
of computations required as we can then separately compute the two terms inside the outermost
brackets in equation 5.

I follow a similar procedure to obtain moments related to managerial expectations and un-
certainty about employment growth over the next year. I make the timing assumption that the
firm’s reported employment in the SBU on date t corresponds to the end-of-period labor nt+1,
Thus, I compute expectations and uncertainty about employment growth between t+ 1 and t+ 5,
∆nt+5, which conditional on today’s state (zt, nt) is a function of a five-dimensional tuple of shocks:
(zt+1, zt+2, zt+3, zt+4, zt+5), since nt+5 = κ(zt+5, nt+4), where κ(·) again is the manager’s policy
function.
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C.3 Computing Objective Firm Value

I compute objective firm values numerically using standard dynamic programming results (e.g. see
Stokey et al., 1989). Let the operator T (·) take as an argument a function f : Z ×N → R and be
defined as follows:

T (f(zt, nt)) = π(zt, nt, κ(zt, nt);w) + E[f(zt+1, κ(zt, nt)).

Again, E[·] is the expectations operation with respect to the objective stochastic process for zt, as
given in the main text. Under standard conditions, T (·) is a contraction mapping. So, starting from a
guess V 0(·) for the firm’s objective value, I update the guess by letting V 1(zt, nt) = T (V 0(zt, nt)) and
iterate until the sup norm between V m(·) and V m+1(·) is under a pre-specified tolerance (in practice
10−20). This procedure is computationally inexpensive (and arguably trivial), yet it crucially helps
me compare managers’ subjective valuations of their own firms Ṽ (·) against the true value V (·)
delivered by managers’ policies, as well as the objective value delivered by biased versus unbiased
managers.

C.4 Estimation Details

C.4.1 SBU variable definitions

Here I define the specific variables from the SBU that I employ in my structural estimation of the
model. Note that the SBU is a monthly survey in which panel members answer questions about
sales and employment every other month for most of my sample period (covering October 2014 to
May 2019). For conformity with the quarterly frequency of my structural model, I collapse the data
to quarterly frequency. For each calendar quarter I pick the last value reported for each variable.
Whenever I compute growth rates, I use arc-percentage changes, following the long tradition in the
literature on business dynamics.

The variables I use in my estimation procedure are the following:

• Sales growth between quarters t− 1 and t: ∆yt = yt−yt−1
yt+yt−1

2

• Sales growth between quarter t and t+ 4: ∆yt+4 = yt+4−yt
yt+4+yt

2

• Net hiring in period t (equivalently, current hiring): ∆nt+1 = nt+1−nt
nt+1+nt

2

. Here I make the timing

assumption that the firm’s employment level in reported in quarter t is nt+1. Thus, labor used
to produce in quarter t, nt, is the amount reported in quarter t−1. This assumption captures
real-world lags in recruiting, interviewing and training new employees.

• Net hiring (i.e. employment growth) between quarters t and t+ 4 : ∆nt+5 = nt+5−nt+1
nt+5+nt+1

2

, again

respecting the timing convention whereby the firm’s current reported employment is nt+1.

• The manager’s forecast for sales growth between t and t + 4, Ẽ[∆yt+4], and her subjective
mean absolute deviation, M̃AD[∆yt+4], measured according to the description in Appendix
A.2.

• The firm’s forecast error for sales growth between t and t+4: ForecastErort,t+4 = Ẽ[∆yt+4]−
∆yt+4, with forecasts and realizations measured following the description in Appendix A.2.
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• The firm’s excess absolute forecast error for sales growth between t and t+ 4:

ExcessAbsForecastErrort,t+4 = ‖ForecastErort,t+4‖ − M̃AD[∆yt+4];

that is the difference between the manager’s realized absolute forecast error and her ex-ante
subjective mean absolute deviation: where I again compute the latter according to the de-
scription in Appendix A.2.

• Planned hiring (i.e. expected employment growth) for the next 12 months is given by:
Ẽ[∆nt+5], measured according to the description in Appendix A.2.

• Uncertainty about future hiring (i.e. employment growth) is given by M̃AD[∆nt+5].

C.4.2 Computing target moments and the weighting matrix

My estimation targets a vector of nineteen data moments m(X). Table C.1 below reproduces their
values, their standard errors and also shows how many firm-quarter observations I use to compute
each moment. To maximize the sample size for each moment, I use all firm-quarter observations for
which I observe the necessary variables to estimate that moment. This means I don’t hold constant
the sample used to compute different data moments.

Two of my target moments are means, namely the mean forecast error and mean excess absolute
forecast error. I compute these in the data as simple arithmetic means. However, the other 17 mo-
ments are variances or covariances. Since variability of sales, employment, forecasts, and subjective
uncertainty in the data may reflect persistent differences across firms and aggregate shocks, I com-
pute my target variance and covariance moments using only within-firm variation after controlling
for aggregate shocks. That is, I first regress each of the variables that go into one of my variance or
covariance targets on a full set of firm and date fixed effects. Then I compute the target variance
or covariance using the residuals from those regressions.7

As I described in Section 4 of the main text, I use the optimal weighting matrix in my econo-
metric minimization procedure, namely an inverse of the firm-clustered variance-covariance matrix
of targeted moments given by:

Ω = E
[
(m(X)−E[m(X)]) · (m(X)−E[m(X)])′

]
.

This treatment of heteroskedasticity accounts for within-firm correlation across observations. I
estimate this variance-covariance matrix using the influence function approach from Erickson and
Whited (2002). Table C.2 reports my estimate Ω̂. I justify this choice of weighting matrix given
its good small sample performance shown when used in similar simulation-based estimators in
Bazdresch et al. (2017). When I estimate Ω̂, I also take into account that different pairs of moments
may have different underlying samples and numbers of observations.

7For a couple of moments, specifically those relating sales growth in t− 1 and t to forecast errors and sales growth
between t and t+4, removing variation due to firm and date fixed effects may introduce dynamic panel complications
that could result in biased estimates of those covariances. However, none of these affected moments change by
economically significant amounts after residualizing.
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C.4.3 Minimizing the econometric objective and computing standard errors

My structural estimation procedure aims to find the vector of parameters ϑ that minimizes the
weighted distance between model and data moments, as described briefly in the main text:

minϑ[m(ϑ)−m(X)]′W [m(ϑ)−m(X)].

Recall that I set W = Ω̂−1, the inverse of my estimate of the covariance matrix of data moments. I
conduct this minimization using a standard simulated annealing algorithm that uses randomization
to find the minimum of the econometric objective.

Following standard results, as sample sizes go to infinity, the vector of estimated parameters ϑ̂
is asymptotically normally distributed with variance Σ :

√
n(ϑ̂− ϑ) → N (0,Σ)

where

Σ =

[
∂m(ϑ)

∂ϑ′
W
∂m(ϑ)

∂ϑ

]−1 ∂m(ϑ)

∂ϑ′
WΩW

∂m(ϑ)

∂ϑ

[
∂m(ϑ)

∂ϑ′
W
∂m(ϑ)

∂ϑ

]−1
.

In practice, I use an estimate of the asymptotic variance Ω̂ in place of Ω and obtain numerical

derivatives for ∂̂m(ϑ)
∂ϑ evaluated at the estimated ϑ̂. I compute the latter using two-sided derivates

with step size equal to 2.5 percent of each element ϑ̂ in my baseline calculation:

Σ̂ =

[
∂̂m(ϑ)

∂ϑ′
W
∂̂m(ϑ)

∂ϑ

]−1
∂̂m(ϑ)

∂ϑ
WM Ω̂W

∂̂m(ϑ)

∂ϑ

[
∂̂m(ϑ)

∂ϑ
W
∂̂m(ϑ)

∂ϑ

]−1
.

The matrix M = (n−11 , ..., n−119 )′ · (n−11 , ...n−119 ), where ni is the number of observations I use to
compute moment i = 1, ..., 19 in the SBU data. The square root of the diagonal of Σ̂ contains the
standard errors of the elements in ϑ̂.

C.4.4 Sensitivity of estimated parameters to moments

Figures C.1 to C.3 show the sensitivity of estimated parameters to moments in the three specifica-
tions of the model, which I compute following Andrews, Gentzkow, and Shapiro (2017). We can see
that certain pairs of parameters (e.g. α and λ, σ and σ̃, and ρ and ρ̃ in the convex only specification)
are sensitive to similar sets of moments, but the sensitivities differ quantitatively within pairs.

One important feature of Figures C.1 to C.3 is that they clearly shows how both technological
parameters and managerial beliefs are sensitive to forecast error and beliefs moments as well as
moments concerning sales and employment dynamics with no beliefs. So the beliefs data also help
me identify the technology parameters, and, similarly, sales and employment dynamics help me
identify beliefs parameters.

29



C.5 Robustness of quantitative results to key calibrated and estimated param-
eters

An obvious drawback of taking a structural approach is that the explicit assumptions embedded in
the model and the particular choice of target moments and parameters all affect the quantitative
results in counterfactuals. To address these concerns, in Tables C.3 and C.4 I report how sensitive
my key counterfactual outcomes are to changes in the adjustment costs parameters λ and F , the
exogenous labor separation rate q, and the returns to scale α. The table focuses on the convex
adjustment costs specification while the second uses hybrid (convex + fixed) adjustment costs. The
first columns of each sub-table replicate the baseline results from Tables 8 and 9 in the main text,
using my baseline estimates and calibration.

The columns labels "High" and "Low" adjustment costs in Tables C.3a and C.3b compute my
main results with adjustment costs parameter that are λ triple and one-third my estimated value.
Tables C.3a and C.3b instead increase or decrease λ and F by fifty percent since there are two
sources of adjustment costs. Biased managers in my model destroy firm value and reduce aggregate
welfare because they overspend on adjustment costs as they hire or lay off too many workers in
response to shocks. Accordingly, higher adjustment costs can lead to higher firm value and welfare
when managers have rational expectations. However, higher adjustment costs also means rational
and biased managers both react less, so their hiring policies might be more similar.

I also consider how changing the exogenous worker separation rate q changes the results. I
calibrate this parameter because my target moments for employment concern net rather than gross
hiring (I observe changes in employment, not gross hires and fires). Changing q, thus, does not
change my model-implied moments and means that is not easy to identify and estimate q with my
current estimation approach. The third column of tables C.3 and C.4 uses q = 0.026 (consistent
with a 10 percent annual attrition rate) rather than q = 0.083 (30 percent annual attrition, following
Shimer, 2005). At higher separation rates managers get to re-optimize a larger fraction of their firm’s
workforce each quarter, so other things equal hiring mistakes are less costly. This logic explains
why we obtain higher firm value costs in the fourth column of Table C.3a. However, in Table C.3b
I find smaller costs of biases with the lower separation rate, likely due to general equilibrium price
effects.

The incentive to reach a target firm size, conditional on beliefs and adjustment costs, depends
crucially on the returns to scale parameter, α. I estimate α to be between 0.8 and 0.9 in my
preferred model specifications, which is consistent with typical estimates of revenue returns to
scale in macroeconomics, but also consider consider how my quantitative results change if I impose
smaller returns to scale of α = 0.65. At both the micro and macro levels, managerial biases are less
costly with lower returns to scale, since steeper declines in the marginal product of labor diminishes
managerial motives to overreact to shocks. See Hsieh and Klenow (2009) for a similar discussion,
whereby increasing revenue returns to scale leads to larger gains from eliminating misallocation in
India and China.

C.6 Consumer Welfare and Managerial Biases if Prices Remain Constant

Table C.5 shows the difference in consumer welfare, aggregate output, labor demand, and labor
productivity between a counterfactual economy with rational managers, and my baseline economy
with biased managers, but wages in both economies are consistent with the equilibrium of the
baseline economy. For brevity, I focus on the model specification with only convex adjustment
costs. As in the main text, both economies also have the same interest rate because that is pinned
down by the household’s discount factor β that is the same in both economies.
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Table C.5 makes it clear why I need to consider general equilibrium forces in my analysis of the
aggregate impact of managerial biases in the main text. Managers who have rational expectations
demand some 25 percent more labor from the household than do biased managers if we hold wages
constant, presumably since their firms are also more profitable. Since firms are larger, aggregate
output also rises by about 20 percent, and labor productivity drops by over 4 percent. Since
consumers supply more labor at the same wage, their labor-leisure tradeoff is distorted and consumer
welfare drops by 6 to 8 percent depending on how much of the extra profits associated with rational
expectations belong to the consumers versus the managers (i.e. θ). Clearly, the quantities in
Table C.5 are implausible. Without the discipline of general equilibrium, it does not make sense to
compute a counterfactual comparing long-run welfare across economies with biased versus rational
managers.

C.7 Managerial Biases Interact with Other Public Policies

This section expands on my argument in the main text that managerial beliefs matter for the impact
of public policies. I show that the cost of managerial overprecision and overextrapolation is higher
when consumers and firms in my model economy are subject to distortionary payroll and labor
income taxes. Similarly, I show that the welfare costs of distortionary taxation are higher when
managers have non-rational rather than rational expectations.

I extend my baseline model with convex adjustment costs to allow for labor income and payroll
taxes, respectively τn and τp, rebating the tax revenue to consumers via a lump sum transfer Tt.
The following equations show the firm’s cash flow function, the representative consumer’s budget
constraint, and the government’s (balanced) budget with these taxes:

π(zt, nt, nt+1;wt) = ztn
α
t − (1 + τp)wtnt −AC(nt, nt+1)

Ct +Bt+1 = (1− τn)wtNt + (1 + rt)Bt + Πt + Tt

Tt = (τn + τp)wtNt.

In Figure C.4 I show that the results from my main macro counterfactual, where I compare
economies with biased and unbiased managers, depend on the level of labor income and payroll taxes
in place. Each point in the figure compares consumer welfare in an economy in which managers have
rational expectations relative to an economy in which managers use my estimated (non-rational)
beliefs process, as a function of the tax rates. For each point in the figure, I calibrate the household’s
disutility of labor χ targeting a steady-state quantity of labor N equal to 1/3 in the equilibrium
with biased managers and taxes. Then I compute the equilibrium of an economy where managers
have rational expectations and record the difference in welfare. From the figure, it is clear that
larger distortionary taxes of either kind increase the welfare implications of non-rational managerial
beliefs.

Figure C.5 shows the results from a related exercise, which examines how the welfare costs of
distortionary labor income taxes depend on managerial beliefs. Each point in the figure considers
an economy with labor income taxes τn according to the horizontal axis. The vertical axis shows
how much higher consumer welfare would be in the stationary equilibrium with no taxes, τn = 0.
As with Figure C.4, I re-calibrate the household’s disutility of labor χ targeting N = 1/3 in the
initial equilibrium with taxes. The two lines in the figure correspond to the welfare costs of the
distortionary tax if managers have rational expectations or not, holding the rest of the parameters
fixed at their estimated values. Taxes are less costly in terms of consumer welfare when managers
have rational expectations.
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The the intuition for why taxes amplify the cost of managerial biases in Figure C.4 and why
managerial biases amplify the costs of distortionary taxes in Figure C.5 is related to the envelope
theorem. When the representative household’s consumption and leisure are near their (undistorted)
optimal levels, distorting the consumption-leisure tradeoff has second order welfare effects that are
relatively small. When consumption and leisure are distorted to begin with, second order effects from
further distortions like taxes or non-rational managerial beliefs become larger. These results provide
additional motivation for why policy-makers should care about pervasive sources of inefficiency like
overprecision and overextrapolation in managerial beliefs, even if it may be difficult to design policies
that change beliefs directly.
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Table C.1: Target Moments For Estimation

Empirical
fact/feature

Moment Value Std. Error N

1 Mean(Forecast Errort,t+4) -1.592E-02 6.584E-03 1947
2 Mean(Excess Absolute Forecast Errort,t+4) 1.475E-01 6.378E-03 1947
3 Cov(Forecast Errort,t+4, Sales Growtht−1,t) 1.356E-02 2.047E-03 1245
0 Cov(Sales Growth Forecastt,t+4, Hiring Planst,t+4) 6.715E-04 2.220E-04 4037
0 Cov(Sales Growth Uncertaintyt,t+4,Hiring Uncertaintyt,t+4) 2.892E-04 1.453E-04 4044
0 Cov(Net Hiringt, Sales Growth Forecastt,t+4) 2.782E-04 1.673E-04 2935
0 Cov(Net Hiringt, Sales Growth Uncertaintyt,t+4) -3.702E-04 3.210E-04 2937
0 Cov(Sales Growth Forecastt,t+4, Realized Sales Growtht,t+4) 1.678E-03 5.896E-04 1844
0 Cov(Hiring Planst,t+4, Realized Employment Growtht,t+4) 2.209E-03 6.864E-04 2113
0 Cov(Sales Growth Uncertaintyt,t+4, Sales Abs. Forecast Errort,t+4) 3.356E-04 1.649E-04 1837
0 Cov(Hiring Uncertaintyt,t+4, Hiring Abs. Forecast Errort,t+4) 2.788E-04 1.202E-04 2104
0 Var(Sales Growth Forecastt,t+4) 3.569E-03 3.769E-04 3535
0 Var(Hiring Planst,t+4) 3.572E-03 4.510E-04 4037
0 Var(Sales Growth Uncertaintyt,t+4) 1.459E-03 7.147E-04 4117
0 Var(Hiring Uncertaintyt,t+4) 1.146E-03 2.876E-04 4044

Dynamics Var(Sales Growtht−1,t) 5.943E-02 4.013E-03 3026
Dynamics Var(Net Hiringt) 1.757E-02 1.885E-03 3175
Dynamics Cov(Net Hiringt, Sales Growtht−1,t) 2.139E-03 9.662E-04 2655
Dynamics Cov(Sales Growtht,t+4,Sales Growtht−1,t) -1.375E-02 2.134E-03 1260

Notes: This table shows the values of the target moments I use in my baseline estimation of the dynamic model
with biased managers described the main text. Here I additionally report the standard errors of each of the target
moments and the number of firm-quarter observations from the SBU I use to compute each moment.
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Table C.5: Counterfactuals with Constant Prices

Managerial
equity share θ

∆ Consumer Welfare % ∆Y % ∆N% ∆ (Y/N) %

0.05 -6.04 19.66 24.99 -4.26
0.25 -6.81 19.66 24.99 -4.26
0.50 -7.89 19.66 24.99 -4.26

Notes: This table computes the long-run difference in consumption-equivalent welfare, aggregate output (GDP), and
labor productivity between an economy in which managers have rational expectations and my baseline economy with
biased managers, but wages in the counterfactual economy remain constant at the level implied by the equilibrium
of the baseline economy.

Figure C.4: Taxes Amplify Welfare Impact of Managerial Biases

Notes: This figure shows the difference in welfare between an economy in which managers have
rational expectations and my baseline economy as a function of distortionary payroll and labor
income taxes. For each point in the figure, I re-calibrate the household’s disutility of labor so as
to attain aggregate labor N = 1/3 in the baseline economy with the combination of taxes in the
figure.
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Figure C.5: Managerial Biases Amplify Welfare Impact of Taxes

Notes: This figure shows the welfare change of removing labor income taxes, starting from an
economy with tax τn and no payroll taxes (τp = 0). Each line shows this welfare change depending
on whether managers are biased or have rational expectations.

42



References

Altig, D., J. M. Barrero, N. Bloom, S. J. Davis, B. H. Meyer, and N. Parker (2020):
“Surveying Business Uncertainty,” Journal of Econometrics.

Andrews, I., M. Gentzkow, and J. M. Shapiro (2017): “Measuring the sensitivity of parameter
estimates to estimation moments,” Quarterly Journal of Economics, 132, 1553–1592.

Arellano, M. and O. Bover (1995): “Another look at the instrumental variable estimation of
error-components models,” Journal of Econometrics, 68, 29–51.

Bazdresch, S., R. J. Kahn, and T. M. Whited (2017): “Estimating and testing dynamic
corporate finance models,” Review of Financial Studies, 31, 322–361.

Bloom, N., P. Bunn, S. Chen, P. Mizen, P. Smietanka, G. Thwaites, and G. Young
(2018): “Brexit and uncertainty: insights from the decision maker panel,” Fiscal Studies, 39,
555–580.

Davis, S. J. and J. Haltiwanger (1992): “Gross job creation, gross job destruction, and em-
ployment reallocation,” Quarterly Journal of Economics, 107, 819–863.

Davis, S. J., J. Haltiwanger, R. Jarmin, and J. Miranda (2007): “Volatility and dispersion
in business growth rates: Publicly traded versus privately held firms,” in NBER Macroeconomics
Annual 2006, Volume 21, MIT Press, 107–180.

Erickson, T. and T. M. Whited (2002): “Two-step GMM estimation of the errors-in-variables
model using high-order moments,” Econometric Theory, 18, 776–799.

Hsieh, C.-T. and P. J. Klenow (2009): “Misallocation and manufacturing TFP in China and
India,” Quarterly Journal of Economics, 124, 1403–1448.

Shimer, R. (2005): “The cyclical behavior of equilibrium unemployment and vacancies,” American
Economic Review, 95, 25–49.

Stokey, N. L., R. E. Lucas, and w. E. C. Prescott (1989): Recursive methods in economic
dynamics, Harvard University Press.

Tauchen, G. (1986): “Finite state markov-chain approximations to univariate and vector autore-
gressions,” Economics Letters, 20, 177–181.

Young, E. R. (2010): “Solving the incomplete markets model with aggregate uncertainty using
the Krusell–Smith algorithm and non-stochastic simulations,” Journal of Economic Dynamics
and Control, 34, 36–41.

43


